Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35165179

ABSTRACT

Tension of the actomyosin cell cortex plays a key role in determining cell-cell contact growth and size. The level of cortical tension outside of the cell-cell contact, when pulling at the contact edge, scales with the total size to which a cell-cell contact can grow [J.-L. Maître et al., Science 338, 253-256 (2012)]. Here, we show in zebrafish primary germ-layer progenitor cells that this monotonic relationship only applies to a narrow range of cortical tension increase and that above a critical threshold, contact size inversely scales with cortical tension. This switch from cortical tension increasing to decreasing progenitor cell-cell contact size is caused by cortical tension promoting E-cadherin anchoring to the actomyosin cytoskeleton, thereby increasing clustering and stability of E-cadherin at the contact. After tension-mediated E-cadherin stabilization at the contact exceeds a critical threshold level, the rate by which the contact expands in response to pulling forces from the cortex sharply drops, leading to smaller contacts at physiologically relevant timescales of contact formation. Thus, the activity of cortical tension in expanding cell-cell contact size is limited by tension-stabilizing E-cadherin-actin complexes at the contact.


Subject(s)
Cadherins/metabolism , Germ Cells/physiology , Stem Cells/physiology , Actin Cytoskeleton/physiology , Actins/metabolism , Actomyosin/metabolism , Animals , Cadherins/physiology , Cell Adhesion/physiology , Cell Communication/physiology , Cell Proliferation/physiology , Cytoskeleton/physiology , Germ Cells/growth & development , Germ Cells/metabolism , Zebrafish/metabolism , alpha Catenin/metabolism
2.
Biophys J ; 120(19): 4182-4192, 2021 10 05.
Article in English | MEDLINE | ID: mdl-33794149

ABSTRACT

Intercellular adhesion is the key to multicellularity, and its malfunction plays an important role in various developmental and disease-related processes. Although it has been intensively studied by both biologists and physicists, a commonly accepted definition of cell-cell adhesion is still being debated. Cell-cell adhesion has been described at the molecular scale as a function of adhesion receptors controlling binding affinity, at the cellular scale as resistance to detachment forces or modulation of surface tension, and at the tissue scale as a regulator of cellular rearrangements and morphogenesis. In this review, we aim to summarize and discuss recent advances in the molecular, cellular, and theoretical description of cell-cell adhesion, ranging from biomimetic models to the complexity of cells and tissues in an organismal context. In particular, we will focus on cadherin-mediated cell-cell adhesion and the role of adhesion signaling and mechanosensation therein, two processes central for understanding the biological and physical basis of cell-cell adhesion.


Subject(s)
Cadherins , Signal Transduction , Biophysical Phenomena , Cell Adhesion , Morphogenesis
4.
Curr Biol ; 34(1): 171-182.e8, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38134934

ABSTRACT

Metazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic reorganization of adhesion receptors and the actomyosin cell cortex in space and time plays a central role in cell-cell contact formation and maturation. Nevertheless, how this process is mechanistically achieved when new contacts are formed remains unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid bilayers functionalized with E-cadherin ectodomains, we show that cortical F-actin flows, driven by the depletion of myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA at the forming contact leads to both a depletion of myosin-2 and a decrease of F-actin at the contact center. At the contact rim, in contrast, myosin-2 becomes enriched by the retraction of bleb-like protrusions, resulting in a cortical tension gradient from the contact rim to its center. This tension gradient, in turn, triggers centrifugal F-actin flows, leading to further accumulation of F-actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the rim. Eventually, this combination of actomyosin downregulation and flows at the contact determines the characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where they are needed to mechanically link the contractile cortices of the adhering cells.


Subject(s)
Actins , Actomyosin , Animals , Actins/metabolism , Cell Adhesion/physiology , Actomyosin/metabolism , Cadherins/genetics , Cadherins/metabolism , Cytoskeletal Proteins , Myosins
5.
FEBS J ; 289(6): 1374-1384, 2022 03.
Article in English | MEDLINE | ID: mdl-33818917

ABSTRACT

Mentorship is experience and/or knowledge-based guidance. Mentors support, sponsor and advocate for mentees. Having one or more mentors when you seek advice can significantly influence and improve your research endeavours, well-being and career development. Positive mentee-mentor relationships are vital for maintaining work-life balance and success in careers. Early-career researchers (ECRs), in particular, can benefit from mentorship to navigate challenges in academic and nonacademic life and careers. Yet, strategies for selecting mentors and maintaining interactions with them are often underdiscussed within research environments. In this Words of Advice, we provide recommendations for ECRs to seek and manage mentorship interactions. Our article draws from our experiences as ECRs and published work, to provide suggestions for mentees to proactively promote beneficial mentorship interactions. The recommended practices highlight the importance of identifying mentorship needs, planning and selecting multiple and diverse mentors, setting goals, and maintaining constructive, and mutually beneficial working relationships with mentors.


Subject(s)
Mentors , Research Personnel , Humans
SELECTION OF CITATIONS
SEARCH DETAIL