Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Int J Mol Sci ; 21(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371306

ABSTRACT

There has been an escalation in reports over the last decade examining the efficacy of bone marrow derived mesenchymal stem/stromal cells (BMSC) in bone tissue engineering and regenerative medicine-based applications. The multipotent differentiation potential, myelosupportive capacity, anti-inflammatory and immune-modulatory properties of BMSC underpins their versatile nature as therapeutic agents. This review addresses the current limitations and challenges of exogenous autologous and allogeneic BMSC based regenerative skeletal therapies in combination with bioactive molecules, cellular derivatives, genetic manipulation, biocompatible hydrogels, solid and composite scaffolds. The review highlights the current approaches and recent developments in utilizing endogenous BMSC activation or exogenous BMSC for the repair of long bone and vertebrae fractures due to osteoporosis or trauma. Current advances employing BMSC based therapies for bone regeneration of craniofacial defects is also discussed. Moreover, this review discusses the latest developments utilizing BMSC therapies in the preclinical and clinical settings, including the treatment of bone related diseases such as Osteogenesis Imperfecta.


Subject(s)
Mesenchymal Stem Cells/cytology , Muscle, Skeletal/cytology , Regeneration , Tissue Engineering/methods , Animals , Humans , Muscle, Skeletal/injuries , Muscle, Skeletal/physiology
2.
Stem Cells ; 34(2): 504-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26718114

ABSTRACT

Twist-1 encodes a basic helix-loop-helix transcription factor, known to contribute to mesodermal and skeletal tissue development. We have reported previously that Twist-1 maintains multipotent human bone marrow-derived mesenchymal stem/stromal cells (BMSC) in an immature state, enhances their life-span, and influences cell fate determination. In this study, human BMSC engineered to express high levels of Twist-1 were found to express elevated levels of the chemokine, CXCL12. Analysis of the CXCL12 proximal promoter using chromatin immunoprecipitation analysis identified several E-box DNA sites bound by Twist-1. Functional studies using a luciferase reporter construct showed that Twist-1 increased CXCL12 promoter activity in a dose dependent manner. Notably, Twist-1 over-expressing BMSC exhibited an enhanced capacity to maintain human CD34 + hematopoietic stem cells (HSC) in long-term culture-initiating cell (LTC-IC) assays. Moreover, the observed increase in HSC maintenance by Twist-1 over-expressing BMSC was blocked in the presence of the CXCL12 inhibitor, AMD3100. Supportive studies, using Twist-1 deficient heterozygous mice demonstrated a significant decrease in the frequency of stromal progenitors and increased numbers of osteoblasts within the bone. These observations correlated to a decreased incidence in the number of clonogenic stromal progenitors (colony forming unit-fibroblasts) and lower levels of CXCL12 in Twist-1 mutant mice. Furthermore, Twist-1 deficient murine stromal feeder layers, exhibited a significant decrease in CXCL12 levels and lower numbers of hematopoietic colonies in LTC-IC assays, compared with wild type controls. These findings demonstrate that Twist-1, which maintains BMSC at an immature state, endows them with an increased capacity for supporting hematopoiesis via direct activation of CXCL12 gene expression.


Subject(s)
Bone Marrow Cells/metabolism , Chemokine CXCL12/biosynthesis , Gene Expression Regulation , Hematopoiesis , Mesenchymal Stem Cells/metabolism , Nuclear Proteins/metabolism , Twist-Related Protein 1/metabolism , Animals , Bone Marrow Cells/cytology , Chemokine CXCL12/genetics , Female , Humans , Male , Mesenchymal Stem Cells/cytology , Mice , Nuclear Proteins/genetics , Twist-Related Protein 1/genetics
3.
Stem Cells ; 33(9): 2838-49, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26033476

ABSTRACT

The tyrosine kinase receptor, EphB4, mediates cross-talk between stromal and hematopoietic populations during bone remodeling, fracture repair and arthritis, through its interactions with the ligand, ephrin-B2. This study demonstrated that transgenic EphB4 mice (EphB4 Tg), over-expressing EphB4 under the control of collagen type-1 promoter, exhibited higher frequencies of osteogenic cells and hematopoietic stem/progenitor cells (HSC), correlating with a higher frequency of long-term culture-initiating cells (LTC-IC), compared with wild type (WT) mice. EphB4 Tg stromal feeder layers displayed a greater capacity to support LTC-IC in vitro, where blocking EphB4/ephrin-B2 interactions decreased LTC-IC output. Similarly, short hairpin RNA-mediated EphB4 knockdown in human bone marrow stromal cells reduced their ability to support high ephrin-B2 expressing CD34(+) HSC in LTC-IC cultures. Notably, irradiated EphB4 Tg mouse recipients displayed enhanced bone marrow reconstitution capacity and enhanced homing efficiency of transplanted donor hematopoietic stem/progenitor cells relative to WT controls. Studies examining the expression of hematopoietic supportive factors produced by stromal cells indicated that CXCL12, Angiopoietin-1, IL-6, FLT-3 ligand, and osteopontin expression were more highly expressed in EphB4 Tg stromal cells compared with WT controls. These findings indicate that EphB4 facilitates stromal-mediated support of hematopoiesis, and constitute a novel component of the HSC niche.


Subject(s)
Hematopoietic Stem Cells/metabolism , Receptor, EphB4/biosynthesis , Amino Acid Sequence , Animals , Cells, Cultured , Gene Expression Regulation , Humans , Mice , Mice, Transgenic , Molecular Sequence Data , Receptor, EphB4/genetics , Stromal Cells/metabolism
4.
Arch Oral Biol ; 137: 105389, 2022 May.
Article in English | MEDLINE | ID: mdl-35299000

ABSTRACT

OBJECTIVE: EFNB1 mutation causes craniofrontonasal dysplasia (CFND), a congenital syndrome associated with craniomaxillofacial anomalies characterised by coronal craniosynostosis, orbital hypertelorism, and midface dysplasia. The aim of this murine study was to investigate the effect of the EfnB1 conditional gene deletion in osteoprogenitor cells on the craniomaxillofacial skeletal morphology. DESIGN: The skulls of male and female mice, in which EfnB1 was deleted by Cre (a site-specific DNA recombinase) under the control of the Osterix (Osx) promoter (EfnB1OB-/-), were compared to those without EfnB1 deletion (Osx:Cre control) at two ages (4 and 8 weeks; n = 6 per group). The three-dimensional micro-computed tomography reconstructions were prepared to calculate 17 linear measurements in the cranial vault (brain box), midface and mandible. Coronal and sagittal sutures from the 8-week-old mice were also subjected to histological examination. RESULTS: EfnB1OB-/- mice displayed significantly larger cranial height, larger interorbital and nasal widths, smaller maxillary width than controls by 8 weeks (p < 0.05), but mandibular size was not significantly different (p > 0.05). Binomial testing showed significantly smaller EfnB1OB-/- skulls at 4 weeks but larger at 8 weeks (p < 0.05). Histological examination revealed increased bony fusion and fibrous connective tissue deposition at the coronal suture of EfnB1OB-/- mice compared with controls. CONCLUSIONS: Craniofacial phenotype of the murine model of EfnB1 deletion in osteoprogenitor cells partially represents the human CFND phenotype, with implications for better understanding mechanisms involved in skeletal morphogenesis and malocclusion.


Subject(s)
Ephrin-B1 , Maxillofacial Development , Skull , Animals , Cranial Sutures/diagnostic imaging , Disease Models, Animal , Ephrin-B1/genetics , Face , Female , Male , Maxillofacial Development/genetics , Mice , Phenotype , Skull/diagnostic imaging , X-Ray Microtomography
5.
Front Cell Dev Biol ; 9: 598612, 2021.
Article in English | MEDLINE | ID: mdl-33634116

ABSTRACT

Skeletal integrity is maintained through the tightly regulated bone remodeling process that occurs continuously throughout postnatal life to replace old bone and to repair skeletal damage. This is maintained primarily through complex interactions between bone resorbing osteoclasts and bone forming osteoblasts. Other elements within the bone microenvironment, including stromal, osteogenic, hematopoietic, endothelial and neural cells, also contribute to maintaining skeletal integrity. Disruption of the dynamic interactions between these diverse cellular systems can lead to poor bone health and an increased susceptibility to skeletal diseases including osteopenia, osteoporosis, osteoarthritis, osteomalacia, and major fractures. Recent reports have implicated a direct role for the Eph tyrosine kinase receptors and their ephrin ligands during bone development, homeostasis and skeletal repair. These membrane-bound molecules mediate contact-dependent signaling through both the Eph receptors, termed forward signaling, and through the ephrin ligands, referred to as reverse signaling. This review will focus on Eph/ ephrin cross-talk as mediators of hematopoietic and stromal cell communication, and how these interactions contribute to blood/ bone marrow function and skeletal integrity during normal steady state or pathological conditions.

6.
Bone ; 142: 115645, 2021 01.
Article in English | MEDLINE | ID: mdl-32949783

ABSTRACT

Emerging evidence in the literature describes a physical and functional association between the neural and skeletal systems that forms a neuro-osteogenic network. This communication between bone cells and neural tissues within the skeleton is important in facilitating bone skeletal growth, homeostasis and repair. The growth and repair of the skeleton is dependent on correct neural innervation for correct skeletal developmental growth and fracture repair, while pathological conditions such as osteoporosis are accelerated by disruptions to sympathetic innervation. To date, different molecular mechanisms have been reported to mediate communication between bone and neural populations. This review highlights the important role of various cell surface receptors, cytokines and associated ligands as potential regulators of skeletal development, homeostasis, and repair, by mediating interactions between the skeletal and nervous systems. Specifically, this review describes how Bone Morphogenetic Proteins (BMPs), Eph/ephrin, Chemokine CXCL12, Calcitonin Gene-related Peptide (CGRP), Netrins, Neurotrophins (NTs), Slit/Robo and the Semaphorins (Semas) contribute to the cross talk between bone cells and peripheral nerves, and the importance of these interactions in maintaining skeletal health.


Subject(s)
Bone Morphogenetic Proteins , Osteogenesis , Bone and Bones , Cell Differentiation , Chemokine CXCL12
7.
JBMR Plus ; 5(5): e10486, 2021 May.
Article in English | MEDLINE | ID: mdl-33977204

ABSTRACT

The mammalian target of rapamycin complex 1 (mTORC1) complex is the major nutrient sensor in mammalian cells that responds to amino acids, energy levels, growth factors, and hormones, such as insulin, to control anabolic and catabolic processes. We have recently shown that suppression of the mTORC1 complex in bone-forming osteoblasts (OBs) improved glucose handling in male mice fed a normal or obesogenic diet. Mechanistically, this occurs, at least in part, by increasing OB insulin sensitivity leading to upregulation of glucose uptake and glycolysis. Given previously reported sex-dependent differences observed upon antagonism of mTORC1 signaling, we investigated the metabolic and skeletal effects of genetic inactivation of preosteoblastic-mTORC1 in female mice. Eight-week-old control diet (CD)-fed Rptor ob -/- mice had a low bone mass with a significant reduction in trabecular bone volume and trabecular number, reduced cortical bone thickness, and increased marrow adiposity. Despite no changes in body composition, CD-fed Rptor ob -/- mice exhibited significant lower fasting insulin and glucose levels and increased insulin sensitivity. Upon high-fat diet (HFD) feeding, Rptor ob -/- mice were resistant to a diet-induced increase in whole-body and total fat mass and protected from the development of diet-induced insulin resistance. Notably, although 12 weeks of HFD increased marrow adiposity, with minimal changes in both trabecular and cortical bone in the female control mice, marrow adiposity was significantly reduced in HFD-fed Rptor ob -/- compared to both HFD-fed control and CD-fed Rptor ob -/- mice. Collectively, our results demonstrate that mTORC1 function in preosteoblasts is crucial for skeletal development and skeletal regulation of glucose homeostasis in both male and female mice. Importantly, loss of mTORC1 function in OBs results in metabolic and physiological adaptations that mirror a caloric restriction phenotype (under CD) and protects against HFD-induced obesity, associated insulin resistance, and marrow adiposity expansion. These results highlight the critical contribution of the skeleton in the regulation of whole-body energy homeostasis. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

8.
Stem Cells ; 27(9): 2229-37, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19544412

ABSTRACT

The human central nervous system has limited capacity for regeneration. Stem cell-based therapies may overcome this through cellular mechanisms of neural replacement and/or through molecular mechanisms, whereby secreted factors induce change in the host tissue. To investigate these mechanisms, we used a readily accessible human cell population, dental pulp progenitor/stem cells (DPSCs) that can differentiate into functionally active neurons given the appropriate environmental cues. We hypothesized that implanted DPSCs secrete factors that coordinate axon guidance within a receptive host nervous system. An avian embryonic model system was adapted to investigate axon guidance in vivo after transplantation of adult human DPSCs. Chemoattraction of avian trigeminal ganglion axons toward implanted DPSCs was mediated via the chemokine, CXCL12, also known as stromal cell-derived factor-1, and its receptor, CXCR4. These findings provide the first direct evidence that DPSCs may induce neuroplasticity within a receptive host nervous system.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/transplantation , Axons/physiology , Dental Pulp/cytology , Trigeminal Ganglion/cytology , Adult Stem Cells/physiology , Animals , Chick Embryo , Enzyme-Linked Immunosorbent Assay , Humans , Neural Crest , Reverse Transcriptase Polymerase Chain Reaction , Stem Cell Transplantation , Transplantation, Heterologous
9.
Stem Cells ; 27(10): 2457-68, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19609939

ABSTRACT

The TWIST family of basic helix-loop-helix transcription factors, Twist-1 and Dermo-1 are known mediators of mesodermal tissue development and contribute to correct patterning of the skeleton. In this study, we demonstrate that freshly purified human bone marrow-derived mesenchymal stromal/stem cells (MSC) express high levels of Twist-1 and Dermo-1 which are downregulated following ex vivo expansion. Enforced expression of Twist-1 or Dermo-1 in human MSC cultures increased expression of the MSC marker, STRO-1, and the early osteogenic transcription factors, Runx2 and Msx2. Conversely, overexpression of Twist-1 and Dermo-1 was associated with a decrease in the gene expression of osteoblast-associated markers, bone morphogenic protein-2, bone sialoprotein, osteopontin, alkaline phosphatase and osteocalcin. High expressing Twist-1 or Dermo-1 MSC lines exhibited an enhanced proliferative potential of approximately 2.5-fold compared with control MSC populations that were associated with elevated levels of Id-1 and Id-2 gene expression. Functional studies demonstrated that high expressing Twist-1 and Dermo-1 MSC displayed a decreased capacity for osteo/chondrogenic differentiation and an enhanced capacity to undergo adipogenesis. These findings implicate the TWIST gene family members as potential mediators of MSC self-renewal and lineage commitment in postnatal skeletal tissues by exerting their effects on genes involved in the early stages of bone development.


Subject(s)
Bone Development/physiology , Cell Differentiation/physiology , Cell Lineage/physiology , Cell Proliferation , Mesenchymal Stem Cells/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Twist-Related Protein 1/metabolism , Adipogenesis/physiology , Adult , Biomarkers/analysis , Biomarkers/metabolism , Cells, Cultured , Down-Regulation/physiology , Humans , Mesenchymal Stem Cells/cytology , Nuclear Proteins/genetics , Osteoblasts/metabolism , Osteogenesis/physiology , Proteins/analysis , Proteins/metabolism , Repressor Proteins/genetics , Transcription Factors/analysis , Transcription Factors/metabolism , Twist-Related Protein 1/genetics , Young Adult
10.
Bone ; 132: 115189, 2020 03.
Article in English | MEDLINE | ID: mdl-31863961

ABSTRACT

The Eph receptor tyrosine kinase ligand, ephrinB1 (EfnB1) is important for correct skeletal and cartilage development, however, the role of EfnB1 in fracture repair is unknown. This study investigated the role of EfnB1 during fracture repair where EfnB1 expression increased significantly at 1 and 2 weeks post fracture in C57Bl/6 wildtype mice, coinciding with the haematoma, soft callus formation/remodelling stages, respectively. To investigate the specific role of EfnB1 within the osteogenic lineage during fracture repair, male mice with a conditional deletion of EfnB1 in the osteogenic lineage (EfnB1OBfl/O), driven by the Osterix (Osx) promoter, and their male Osx:Cre counterparts were subject to a femoral fracture with internal fixation. Two weeks post fracture micro computed tomography (µCT) analysis revealed that EfnB1OBfl/O mice displayed a significant decrease in bone volume relative to tissue volume within the fracture callus. This was attributed to an alteration in the distribution of osteoclasts within the fracture site, a significant elevation in cartilaginous tissue and reduction in the osteoprogenitor population and calcein labelled bone within the fracture site of EfnB1OBfl/O mice. Supportive in vitro studies demonstrated that under osteogenic conditions, cultured EfnB1OBfl/O stromal cells derived from the 2 week fracture site exhibited a reduced capacity to produce mineral and decreased expression of the osteogenic gene, Osterix, when compared to Osx:Cre controls. These findings suggest that the loss of EfnB1 delays the fracture repair process. The present study confirmed that EFNB1 activation in human BMSC, following stimulation with soluble-EphB2 resulted in de-phosphorylation of TAZ, demonstrating similarities in EfnB1 signalling between human and mouse stromal populations. Overall, the present study provides evidence that loss of EfnB1 in the osteo/chondrogenic lineages delays the soft callus formation/remodelling stages of the fracture repair process.


Subject(s)
Ephrin-B1 , Osteogenesis , Animals , Bony Callus/diagnostic imaging , Fracture Healing , Male , Mice , Mice, Knockout , Osteoclasts , Osteogenesis/genetics , X-Ray Microtomography
11.
J Cell Physiol ; 218(2): 237-45, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18792913

ABSTRACT

Four decades after the first isolation and characterization of clonogenic bone marrow stromal cells or mesenchymal stem cells (MSC) in the laboratory of Dr. Alexander Friedenstien, the therapeutic application of their progeny following ex vivo expansion are only now starting to be realized in the clinic. The multipotency, paracrine effects, and immune-modulatory properties of MSC present them as an ideal stem cell candidate for tissue engineering and regenerative medicine. In recent years it has come to light that MSC encompass plasticity that extends beyond the conventional bone, adipose, cartilage, and other skeletal structures, and has expanded to the differentiation of liver, kidney, muscle, skin, neural, and cardiac cell lineages. This review will specifically focus on the skeletal regenerative capacity of bone marrow derived MSC alone or in combination with growth factors, biocompatible scaffolds, and following genetic modification.


Subject(s)
Bone and Bones/pathology , Cell- and Tissue-Based Therapy , Mesenchymal Stem Cells/cytology , Multipotent Stem Cells/cytology , Stromal Cells/cytology , Wound Healing , Animals , Humans
12.
Exp Hematol ; 69: 43-53, 2019 01.
Article in English | MEDLINE | ID: mdl-30326247

ABSTRACT

The bone marrow stromal microenvironment contributes to the maintenance and function of hematopoietic stem/progenitor cells (HSPCs). The Eph receptor tyrosine kinase family members have been implicated in bone homeostasis and stromal support of HSPCs. The present study examined the influence of EfnB1-expressing osteogenic lineage on HSPC function. Mice with conditional deletion of EfnB1 in the osteogenic lineage (EfnB1OB-/-), driven by the Osterix promoter, exhibited a reduced prevalence of osteogenic progenitors and osteoblasts, correlating to lower numbers of HSPCs compared with Osx:Cre mice. Long-term culture-initiating cell (LTC-IC) assays confirmed that the loss of EfnB1 within bone cells hindered HSPC function, with a significant reduction in colony formation in EfnB1OB-/- mice compared with Osx:Cre mice. Human studies confirmed that activation of EPHB2 on CD34+ HSPCs via EFNB1-Fc stimulation enhanced myeloid/erythroid colony formation, whereas functional blocking of either EPHB1 or EPHB2 inhibited the maintenance of LTC-ICs. Moreover, EFNB1 reverse signaling in human and mouse stromal cells was found to be required for the activation of the HSPC-promoting factor CXCL12. Collectively, the results of this study confirm that EfnB1 contributes to the stromal support of HSPC function and maintenance and may be an important factor in regulating the HSPC niche.


Subject(s)
Ephrin-B1/metabolism , Hematopoietic Stem Cells/metabolism , Osteoblasts/metabolism , Osteogenesis , Signal Transduction , Stem Cell Niche , Animals , Chemokine CXCL2/genetics , Chemokine CXCL2/metabolism , Ephrin-B1/genetics , Gene Deletion , Hematopoietic Stem Cells/cytology , Humans , Mice , Mice, Knockout , Osteoblasts/cytology , Stromal Cells/cytology , Stromal Cells/metabolism
13.
Sci Rep ; 8(1): 12756, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30143786

ABSTRACT

The present study investigated the effects of conditional deletion of ephrinB1 in osteoprogenitor cells driven by the Osterix (Osx) promoter, on skeletal integrity in a murine model of ovariectomy-induced (OVX) osteoporosis. Histomorphometric and µCT analyses revealed that loss of ephrinB1 in sham Osx:cre-ephrinB1fl/fl mice caused a reduction in trabecular bone comparable to OVX Osx:Cre mice, which was associated with a significant reduction in bone formation rates and decrease in osteoblast numbers. Interestingly, these observations were not exacerbated in OVX Osx:cre-ephrinB1fl/fl mice. Furthermore, sham Osx:cre-ephrinB1fl/fl mice displayed significantly higher osteoclast numbers and circulating degraded collagen type 1 compared to OVX Osx:Cre mice. Confirmation studies found that cultured monocytes expressing EphB2 formed fewer TRAP+ multinucleated osteoclasts and exhibited lower resorption activity in the presence of soluble ephrinB1-Fc compared to IgG control. This inhibition of osteoclast formation and function induced by ephrinB1-Fc was reversed in the presence of an EphB2 chemical inhibitor. Collectively, these observations suggest that ephrinB1, expressed by osteoprogenitors, influences bone loss during the development of osteoporosis, by regulating both osteoblast and osteoclast formation and function, leading to a loss of skeletal integrity.


Subject(s)
Bone Resorption/metabolism , Ephrin-B1/physiology , Osteoblasts/metabolism , Osteoporosis/etiology , Animals , Cell Count , Cells, Cultured , Disease Models, Animal , Ephrin-B1/deficiency , Ephrin-B2/physiology , Female , Male , Mice , Mice, Knockout , Mice, Transgenic , Osteoclasts/metabolism , Osteoporosis/metabolism , Ovariectomy/adverse effects , Promoter Regions, Genetic , Recombinant Proteins/metabolism , Sp7 Transcription Factor/genetics
14.
Exp Hematol ; 48: 72-78, 2017 04.
Article in English | MEDLINE | ID: mdl-27988259

ABSTRACT

The proliferation, differentiation, adhesion, and migration of hematopoietic stem and progenitor cells (HSPCs) are dependent upon bone marrow stromal cells (BMSCs). In this study, we found that human primitive HSPCs (CD34+CD38-), but not lineage-committed hematopoietic cell populations, express the tyrosine kinase receptors EphA5 and EphA7. Moreover, we found that the ephrinA5 ligand, the high-affinity binding partner of EphA5 and EphA7, is highly expressed by primary human BMSCs. Previous studies have reported that interactions between EphA and ephrinA play important roles in hematopoietic cell trafficking; however, their role in BMSC support of hematopoiesis had not been described previously. Herein, we show that stimulating EphA5 and/or EphA7 forward signaling in HSPCs using soluble ephrinA5-Fc molecules promoted human HSPC-derived colony formation significantly and was associated with increased expression of granulocyte macrophage colony-stimulating factor receptor on HSPCs. Studies using functional blocking peptides to EphA5/7 found that disruption of EphA5/ephrinA5 and/or EphA7/ephrinA5 interactions inhibited HSPC function in BMSC-dependent long-term culture-initiating cell assays. Furthermore, the adhesion and migration of HSPCs was increased significantly in the presence of ephrinA5-Fc molecules compared with human immunoglobulin G-treated controls. Conversely, blocking EphA5 activation led to a reduction of HSPC adhesion, whereas inhibiting EphA5 and/or EphA7 activation hindered HSPC migration. Analysis of HSPC cultured in the presence of ephrinA5-Fc showed that EphA forward signaling stimulated Rac1 gene and protein expression and the Rac1 target molecule WAVE1. Moreover, a significant reduction of ephrinA5-mediated HSPC adhesion and migration was observed in the presence of Rac1 inhibitor. These findings suggest that interactions between EphA and ephrinA5 are important in maintaining the HSPC niche mediated in part by activation of Rac1 signaling.


Subject(s)
Cell Movement , Cell Self Renewal , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/physiology , Receptor, EphA5/metabolism , Receptor, EphA7/metabolism , Signal Transduction , rac1 GTP-Binding Protein/metabolism , Cell Adhesion/genetics , Cell Communication , Cell Differentiation , Cell Movement/genetics , Cell Self Renewal/genetics , Gene Expression Profiling , Humans , Receptor, EphA5/genetics , Receptor, EphA7/genetics , Stem Cells , Stromal Cells/metabolism
15.
Int J Hematol ; 103(2): 145-54, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26475284

ABSTRACT

Bone marrow mesenchymal stromal/stem cells(BMSC) are fundamental regulatory elements of the hematopoietic stem cell niche; however, the molecular signals that mediate BMSC support of hematopoiesis are poorly understood. Recent studies indicate that BMSC and hematopoietic stem/progenitors cells differentially express the Eph cell surface tyrosine kinase receptors, and their ephrinligands. Eph/ephrin interactions are thought to mediate cross-talk between BMSC and different hematopoietic cell populations to influence cell development, migration and function. This review summarizes Eph/ephrin interactions in the regulation of BMSC communication with hematopoietic stem/progenitor cells and discusses Eph/ephrintargeted therapeutic strategies that are currently being pursued or various hematotological malignancies.


Subject(s)
Cell Communication , Ephrins/physiology , Hematopoietic Stem Cells/physiology , Mesenchymal Stem Cells/physiology , Receptor, EphA1/physiology , Animals , Cell Communication/genetics , Ephrins/metabolism , Hematologic Neoplasms/therapy , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Humans , Ligands , Mesenchymal Stem Cells/metabolism , Mice , Molecular Targeted Therapy , Receptor, EphA1/metabolism
16.
Bone ; 93: 12-21, 2016 12.
Article in English | MEDLINE | ID: mdl-27622886

ABSTRACT

The EphB receptor tyrosine kinase family and their ephrinB ligands have been implicated as mediators of skeletal development and bone homeostasis in humans, where mutations in ephrinB1 contribute to frontonasal dysplasia and coronal craniosynostosis. In mouse models, ephrinB1 has been shown to be a critical factor mediating osteoblast function. The present study examined the functional importance of ephrinB1 during endochondral ossification using the Cre recombination system with targeted deletion of ephrinB1 (EfnB1fl/fl) in osteogenic progenitor cells, under the control of the osterix (Osx:Cre) promoter. The Osx:EfnB1-/- mice displayed aberrant bone growth during embryonic and postnatal skeletal development up to 4weeks of age, when compared to the Osx:Cre controls. Furthermore, compared to the Osx:Cre control mice, the Osx:EfnB1-/- mice exhibited significantly weaker and less rigid bones, with a reduction in trabecular/ cortical bone formation, reduced trabecular architecture and a reduction in the size of the growth plates at the distal end of the femora from newborn through to 4weeks of age. The aberrant bone formation correlated with increased numbers of tartrate resistant acid phosphatase positive osteoclasts and decreased numbers of bone lining osteoblasts in 4week old Osx:EfnB1-/- mice, compared to Osx:Cre control mice. Taken together, these observations demonstrate the importance of ephrinB1 signalling between cells of the skeleton required for endochondral ossification.


Subject(s)
Bone and Bones/physiology , Chondrogenesis , Ephrin-B1/deficiency , Osteogenesis , Stem Cells/metabolism , Animals , Bone and Bones/embryology , Cancellous Bone/growth & development , Cortical Bone/growth & development , Embryonic Development , Ephrin-B1/metabolism , Female , Growth Plate/growth & development , Male , Mice, Inbred C57BL , Osteoblasts/metabolism , Osteoclasts/metabolism , Promoter Regions, Genetic , Sp7 Transcription Factor/genetics , Sp7 Transcription Factor/metabolism , Survival Analysis
17.
J Bone Miner Res ; 28(4): 926-35, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23165754

ABSTRACT

Previous reports have identified a role for the tyrosine kinase receptor EphB4 and its ligand, ephrinB2, as potential mediators of both bone formation by osteoblasts and bone resorption by osteoclasts. In the present study, we examined the role of EphB4 during bone repair after traumatic injury. We performed femoral fractures with internal fixation in transgenic mice that overexpress EphB4 under the collagen type 1 promoter (Col1-EphB4) and investigated the bone repair process up to 12 weeks postfracture. The data indicated that Col1-EphB4 mice exhibited stiffer and stronger bones after fracture compared with wild-type mice. The fractured bones of Col1-EphB4 transgenic mice displayed significantly greater tissue and bone volume 2 weeks postfracture compared with that of wild-type mice. These findings correlated with increased chondrogenesis and mineral formation within the callus site at 2 weeks postfracture, as demonstrated by increased safranin O and von Kossa staining, respectively. Interestingly, Col1-EphB4 mice were found to possess significantly greater numbers of clonogenic mesenchymal stromal progenitor cells (CFU-F), with an increased capacity to form mineralized nodules in vitro under osteogenic conditions, when compared with those of the wild-type control mice. Furthermore, Col1-EphB4 mice had significantly lower numbers of TRAP-positive multinucleated osteoclasts within the callus site. Taken together, these observations suggest that EphB4 promotes endochondral ossification while inhibiting osteoclast development during callus formation and may represent a novel drug target for the repair of fractured bones.


Subject(s)
Bone Remodeling , Fracture Healing , Fractures, Bone/pathology , Fractures, Bone/physiopathology , Osteogenesis , Receptor, EphB4/metabolism , Animals , Biomechanical Phenomena , Bony Callus/pathology , Bony Callus/physiopathology , Cell Count , Collagen Type I , Female , Fractures, Bone/diagnostic imaging , Gene Expression Regulation , Male , Mice, Transgenic , Minerals/metabolism , Receptor, EphB4/genetics , Stem Cells/metabolism , X-Ray Microtomography
18.
Methods Mol Biol ; 698: 107-21, 2011.
Article in English | MEDLINE | ID: mdl-21431514

ABSTRACT

Dentinal repair in teeth occurs through the activity of specialized cells known as odontoblasts that are thought to be maintained by a precursor population associated with the perivascular cells within dental pulp tissue. We have previously isolated candidate dental pulp stem cells (DPSC) from adult human third molars, with the ability to generate clonogenic cell clusters (CFU-F: colony-forming units-fibroblastic), a high proliferation rate, and multi-potential differentiation in vitro. When cultured DPSC are transplanted into immunocompromised mice, they generated a dentin-like structure lined with human odontoblast-like cells that surrounded a pulp-like interstitial tissue, composed of collagen and a vascular network. The present protocol describes a methodology to generate highly purified preparations of human DPSC. This process involves the enzymatic digestion of fresh samples of human dental pulp tissue followed by the isolation of DPSC using magnetic bead cell separation, based on their expression of mesenchymal stem cell associated markers.


Subject(s)
Cell Culture Techniques/methods , Cell Separation/methods , Dental Pulp/cytology , Stem Cells/cytology , Adipocytes/cytology , Adult , Animals , Cell Differentiation , Colony-Forming Units Assay , Cryopreservation , Flow Cytometry , Humans , Magnetics , Mice , Microspheres , Nervous System/cytology , Osteoblasts/cytology , Suspensions
19.
Bone ; 48(3): 533-42, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21056708

ABSTRACT

Bone marrow derived mesenchymal stem/stromal cells (MSC) contribute to skeletal tissue formation and the regulation of haematopoiesis. The Eph/ephrin family of receptor tyrosine kinases is potentially important in the maintenance of the stem cell niche within neural, intestinal and dental tissues and has recently been shown to play a role in regulating bone homeostasis. However, the contribution of EphB/ephrin-B molecules in human MSC function remains to be determined. In the present study, EphB and ephrin-B molecules were expressed by ex vivo expanded human MSC populations and within human bone marrow trephine samples. To elucidate the contribution of EphB/ephrin-B molecules in MSC recruitment, we performed functional spreading and migration assays and showed that reverse ephrin-B signalling inhibited MSC attachment and spreading by activating Src-, PI3Kinase- and JNK-dependent signalling pathways. In contrast, forward EphB2 signalling promoted MSC migration by activating the Src kinase- and Abl-dependent signalling pathways. Furthermore, activation of ephrin-B1 and/or ephrin-B2 molecules expressed by MSC was found to increase osteogenic differentiation, while ephrin-B1 activation promoted chondrogenic differentiation. These observations suggest that EphB/ephrin-B interactions may mediate the recruitment, migration and differentiation of MSC during bone repair.


Subject(s)
Cell Differentiation , Cell Movement , Chondrogenesis , Ephrins/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Receptors, Eph Family/metabolism , Cell Adhesion , Cell Differentiation/genetics , Cell Line , Cell Movement/genetics , Chondrogenesis/genetics , Ephrins/genetics , Gene Expression Regulation , Humans , Ligands , Osteogenesis/genetics , Protein Binding , Receptors, Eph Family/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL