Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Aesthet Surg J ; 38(suppl_2): S52-S61, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29240873

ABSTRACT

BACKGROUND: Ralstonia Pickettii biofilms are associated with pocket infections following breast implant surgeries. Biofilm protects bacteria most topically applied antimicrobial irrigations. OBJECTIVES: To evaluate the effectiveness of four antimicrobial solutions on the planktonic form and established biofilm of Ralstonia Pickettii grown on 3 different types of silicone breast implants. METHODS: Time kill assays at clinical concentrations of chlorhexidine gluconate, povidone iodine, triple-antibiotic solution, and a 0.025% hypochlorous acid solution stabilized in amber glass were evaluated. Normal saline was the control. Three types of silicone implants, two with a textured surface and one smooth surface, were selected. Planktonic assays were performed after implants were soaked for one, five, 30, and 120 minute time points. Biofilm assays were performed after 5 and 120 minutes of implant soak time. Both tests evaluated cell-forming units (CFU/mL). RESULTS: Triple antibiotic solution had no effect on R. pickettii and was dropped from the study. Remaining solutions showed total kill of planktonic bacteria at one minute. Saline control showed no significant effect on biofilm as anticipated. Stabilized hypochlorous acid was the only solution tested capable of eradicating R. pickettii biofilm on all implant surfaces tested within the first five minute soak time. CONCLUSIONS: Noncytotoxic, 0.025% hypochlorous acid in normal saline, stabilized in amber glass, successfully eradicated Ralstonia pickettii in planktonic and mature biofilm on three types of silicone implants during initial five minute soak time and may be the preferred antimicrobial solution for pocket lavage. This preliminary study requires further investigation. Leaching and implant compatibility testing is currently in progress.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Breast Implants/microbiology , Hypochlorous Acid/administration & dosage , Ralstonia pickettii/drug effects , Biofilms/drug effects , Breast Implantation/adverse effects , Breast Implantation/instrumentation , Breast Implants/adverse effects , Humans , Microbial Sensitivity Tests , Prosthesis-Related Infections/etiology , Prosthesis-Related Infections/microbiology , Prosthesis-Related Infections/prevention & control , Ralstonia pickettii/isolation & purification , Ralstonia pickettii/physiology , Silicone Gels
2.
Exp Parasitol ; 138: 30-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24480589

ABSTRACT

Wolbachia of filarial nematodes are essential, obligate endobacteria. When depleted by doxycycline worm embryogenesis, larval development and worm survival are inhibited. The molecular basis governing the endosymbiosis between Wolbachia and their filarial host is still being deciphered. In rodent filarial nematode Litomosoides sigmodontis, a nematode encoded phosphate permease gene (Ls-ppe-1) was up-regulated at the mRNA level in response to Wolbachia depletion and this gene promises to have an important role in Wolbachia-nematode endosymbiosis. To further characterize this gene, the regulation of phosphate permease during Wolbachia depletion was studied at the protein level in L. sigmodontis and in the human filaria Onchocerca volvulus. And the localization of phosphate permease (PPE) and Wolbachia in L. sigmodontis and O. volvulus was investigated in untreated and antibiotic treated worms. Depletion of Wolbachia by tetracycline (Tet) resulted in up-regulation of Ls-ppe-1 in L. sigmodontis. On day 36 of Tet treatment, compared to controls (Con), >98% of Wolbachia were depleted with a 3-fold increase in mRNA levels of Ls-ppe-1. Anti-Ls-PPE serum used in Western blots showed up-regulation of Ls-PPE at the protein level in Tet worms on day 15 and 36 of treatment. Immunohistology revealed the localization of Wolbachia and Ls-PPE in the embryos, microfilariae and hypodermis of L. sigmodontis female worms and up-regulation of Ls-PPE in response to Wolbachia depletion. Expression of O. volvulus phosphate permease (Ov-PPE) studied using anti-Ov-PPE serum, showed up-regulation of Ov-PPE at the protein level in doxycycline treated Wolbachia depleted O. volvulus worms and immunohistology revealed localization of Ov-PPE and Wolbachia and up-regulation of Ov-PPE in the hypodermis and embryos of doxycycline treated worms. Ls-PPE and Ov-PPE are upregulated upon Wolbachia depletion in same tissues and regions where Wolbachia are located in untreated worms, reinforcing a link between Wolbachia and this nematode encoded protein. The function of nematode phosphate permease in the endosymbiosis is unknown but could involve transportation of phosphate to Wolbachia, which encode all the genes necessary for de novo nucleotide biosynthesis. Electron microscopic localization of PPE and Wolbachia and RNAi mediated knock-down of PPE in filarial nematodes will bring further insights to the functions of PPE in the Wolbachia-nematode symbiosis.


Subject(s)
Filarioidea/enzymology , Onchocerca volvulus/enzymology , Phosphate Transport Proteins/metabolism , Wolbachia/physiology , Animals , Anti-Bacterial Agents/pharmacology , Antibody Specificity , Blotting, Western , Doxycycline/pharmacology , Female , Filarioidea/genetics , Filarioidea/microbiology , Humans , Immune Sera/immunology , Immunohistochemistry , Interleukin-5/deficiency , Mice , Mice, Inbred BALB C , Onchocerca volvulus/drug effects , Onchocerca volvulus/microbiology , Phosphate Transport Proteins/immunology , Phosphate Transport Proteins/isolation & purification , Rabbits , Tetracycline/pharmacology , Up-Regulation , Wolbachia/drug effects
3.
Exp Parasitol ; 135(2): 446-55, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23981910

ABSTRACT

Previous studies have shown that intradermally (ID) injected Brugia pahangi L3 s migrate through various tissues and into the lymphatics of gerbils in a distinct pattern. Excretory/secretory products (ES) produced at the time of invasion of B. pahangi are likely to be important in this early migration phase of the parasite life cycle in their rodent host. Hence, early L3 ES was collected from 24h in vitro cultures of B. pahangi L3 larvae and used in immunization experiments to investigate the effect of immunity to early L3 ES on worm migration, survival and development of B. pahangi. Immunization of gerbils with ES in RIBI adjuvant produced antibodies to numerous ES proteins eliciting a strong humoral response to ES and indirect fluorescent antibody (IFA) assay using anti-ES serum recognized the ES proteins on the surface of B. pahangi L3 larvae. Following ES immunization, gerbils were challenged either ID or intraperitoneally (IP) with 100 L3 s of B. pahangi and euthanized at 3 or 106 days post inoculation (DPI). Immunization with early ES slowed the migration of ID inoculated L3 at 3 DPI and significantly altered the locations of adult worms at 106 DPI. Immunization did not induce protection in any treatment group. However, immunized animals had significantly fewer microfilariae per female worm suggesting the antigens in ES are important in microfilariae development or survival in the host. The number of lymphatic granulomas was also significantly reduced in ES immunized animals. It is important to note that microfilariae serve as a nidus in these granulomas. Our results shows immunization with early Brugia malayi L3 ES alters the worm migration, affects circulating microfilarial numbers and reduces lymphatic granulomas associated with B. pahangi infection in gerbils.


Subject(s)
Antigens, Helminth/immunology , Brugia pahangi/immunology , Filariasis/immunology , Helminth Proteins/immunology , Lymphatic System/pathology , Animals , Antibodies, Helminth/biosynthesis , Antibodies, Helminth/immunology , Antigens, Helminth/administration & dosage , Antigens, Helminth/chemistry , Blotting, Western , Brugia pahangi/growth & development , Brugia pahangi/physiology , Electrophoresis, Polyacrylamide Gel , Female , Filariasis/parasitology , Filariasis/pathology , Gerbillinae , Heart/parasitology , Helminth Proteins/administration & dosage , Helminth Proteins/chemistry , Immunization/methods , Immunoglobulin G/biosynthesis , Larva/immunology , Larva/physiology , Lung/parasitology , Lymph Nodes/parasitology , Lymph Nodes/pathology , Lymphatic System/parasitology , Male
4.
Int J Parasitol ; 38(8-9): 981-7, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18282572

ABSTRACT

The rodent filaria Litomosoides sigmodontis harbour Wolbachia, endosymbionts essential for worm embryogenesis, larval development and adult survival. To study the effect of tetracycline, which depletes Wolbachia, on the development of microfilariae (L1s, MF) to L3 in the intermediate host Ornithonyssus bacoti, and to observe the development of Wolbachia-depleted L3s in Mongolian gerbils (Meriones unguiculatus); microfilaremic gerbils were treated orally with tetracycline for 6 weeks (primary infected Tet) or untreated (primary Con). Treatment resulted in a significant reduction of Wolbachia per MF in primary Tet gerbils. Naïve mites then fed on the primary Tet and primary Con gerbils in the week after treatment ended, when MF levels were not significantly different, and used to infect new gerbils (secondary infected ) Tet, secondary Con) via natural infection. The infection rate from dissected mites was 9% and 54% (primary Tet and primary Con, respectively). After 3 months, worms were isolated from secondary gerbils. Significantly fewer female worms developed in secondary Tet gerbils. In contrast, there was no difference in the number of male worms that developed in secondary gerbils, resulting in a male biased sex-ratio. Although secondary Tet male worms had fewer Wolbachia than secondary Con males, development was not impaired. Female worms that developed from Wolbachia-depleted MF had Wolbachia levels equivalent to worms from secondary Con animals. Thus, tetracycline pre-treatment selected for female worms with high numbers of Wolbachia, whereas male worms had median Wolbachia levels significantly lower than secondary Con males. Therefore, female worms require a higher threshold of Wolbachia for their development. The worms analysed were only exposed to tetracycline as MF, ruling out direct effects of tetracycline during larval development in the mites or secondary gerbils, suggesting that the depletion of Wolbachia in MF was the cause of impaired larval development.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gerbillinae/parasitology , Microfilariae/growth & development , Sex Ratio , Tetracycline/pharmacology , Wolbachia/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , DNA, Bacterial/analysis , DNA, Helminth/analysis , DNA, Helminth/drug effects , Humans , Male , Microfilariae/microbiology , Mites/parasitology , Polymerase Chain Reaction , Tetracycline/administration & dosage , Wolbachia/isolation & purification
5.
PLoS Negl Trop Dis ; 12(10): e0006772, 2018 10.
Article in English | MEDLINE | ID: mdl-30296268

ABSTRACT

Parasitic nematodes produce an unusual class of fatty acid and retinol (FAR)-binding proteins that may scavenge host fatty acids and retinoids. Two FARs from Brugia malayi (Bm-FAR-1 and Bm-FAR-2) were expressed as recombinant proteins, and their ligand binding, structural characteristics, and immunogenicities examined. Circular dichroism showed that rBm-FAR-1 and rBm-FAR-2 are similarly rich in α-helix structure. Unexpectedly, however, their lipid binding activities were found to be readily differentiated. Both FARs bound retinol and cis-parinaric acid similarly, but, while rBm-FAR-1 induced a dramatic increase in fluorescence emission and blue shift in peak emission by the fluorophore-tagged fatty acid (dansyl-undecanoic acid), rBm-FAR-2 did not. Recombinant forms of the related proteins from Onchocerca volvulus, rOv-FAR-1 and rOv-FAR-2, were found to be similarly distinguishable. This is the first FAR-2 protein from parasitic nematodes that is being characterized. The relative protein abundance of Bm-FAR-1 was higher than Bm-FAR-2 in the lysates of different developmental stages of B. malayi. Both FAR proteins were targets of strong IgG1, IgG3 and IgE antibody in infected individuals and individuals who were classified as endemic normal or putatively immune. In a B. malayi infection model in gerbils, immunization with rBm-FAR-1 and rBm-FAR-2 formulated in a water-in-oil-emulsion (®Montanide-720) or alum elicited high titers of antigen-specific IgG, but only gerbils immunized with rBm-FAR-1 formulated with the former produced a statistically significant reduction in adult worms (68%) following challenge with B. malayi infective larvae. These results suggest that FAR proteins may play important roles in the survival of filarial nematodes in the host, and represent potential candidates for vaccine development against lymphatic filariasis and related filarial infections.


Subject(s)
Antigens, Helminth/immunology , Brugia malayi/immunology , Fatty Acid-Binding Proteins/immunology , Filariasis/prevention & control , Retinol-Binding Proteins/immunology , Vaccines, Synthetic/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Helminth/blood , Antigens, Helminth/chemistry , Circular Dichroism , Disease Models, Animal , Fatty Acid-Binding Proteins/chemistry , Female , Gerbillinae , Humans , Immunoglobulin E/blood , Immunoglobulin G/blood , Male , Parasite Load , Protein Binding , Protein Structure, Secondary , Retinol-Binding Proteins/chemistry , Treatment Outcome , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/isolation & purification , Vitamin A/metabolism
6.
PLoS Negl Trop Dis ; 10(4): e0004586, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27045170

ABSTRACT

BACKGROUND: The Brugia malayi Bm-103 and Bm-RAL-2 proteins are orthologous to Onchocerca volvulus Ov-103 and Ov-RAL-2, and which were selected as the best candidates for the development of an O. volvulus vaccine. The B. malayi gerbil model was used to confirm the efficacy of these Ov vaccine candidates on adult worms and to determine whether their combination is more efficacious. METHODOLOGY AND PRINCIPLE FINDINGS: Vaccine efficacy of recombinant Bm-103 and Bm-RAL-2 administered individually, concurrently or as a fusion protein were tested in gerbils using alum as adjuvant. Vaccination with Bm-103 resulted in worm reductions of 39%, 34% and 22% on 42, 120 and 150 days post infection (dpi), respectively, and vaccination with Bm-RAL-2 resulted in worm reductions of 42%, 22% and 46% on 42, 120 and 150 dpi, respectively. Vaccination with a fusion protein comprised of Bm-103 and Bm-RAL-2 resulted in improved efficacy with significant reduction of worm burden of 51% and 49% at 90 dpi, as did the concurrent vaccination with Bm-103 and Bm-RAL-2, with worm reduction of 61% and 56% at 90 dpi. Vaccination with Bm-103 and Bm-RAL-2 as a fusion protein or concurrently not only induced a significant worm reduction of 61% and 42%, respectively, at 150 dpi, but also significantly reduced the fecundity of female worms as determined by embryograms. Elevated levels of antigen-specific IgG were observed in all vaccinated gerbils. Serum from gerbils vaccinated with Bm-103 and Bm-RAL-2 individually, concurrently or as a fusion protein killed third stage larvae in vitro when combined with peritoneal exudate cells. CONCLUSION: Although vaccination with Bm-103 and Bm-RAL-2 individually conferred protection against B. malayi infection in gerbils, a more consistent and enhanced protection was induced by vaccination with Bm-103 and Bm-RAL-2 fusion protein and when they were used concurrently. Further characterization and optimization of these filarial vaccines are warranted.


Subject(s)
Antigens, Helminth/immunology , Brugia malayi/immunology , Filariasis/prevention & control , Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Animals , Antibodies, Helminth/blood , Antigens, Helminth/genetics , Brugia malayi/genetics , Disease Models, Animal , Gerbillinae , Parasite Load , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Treatment Outcome , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
7.
Parasit Vectors ; 7: 43, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24450869

ABSTRACT

BACKGROUND: Cysteine protease inhibitors of Brugia malayi have been ascribed to be involved in parasite development as well as to immunomodulate the host's immune response. In Onchocerca volvulus, Onchocystatin has been shown to induce partial protection in the mouse diffusion chamber vaccination model. In the present study we investigated the impact of vaccination with recombinant Bm-CPI-1 and Bm-CPI-2 proteins on protection against a subcutaneous challenge of B. malayi third stage larvae in gerbils. FINDINGS: Vaccination with E. coli derived recombinant B. malayi cysteine protease inhibitors (Bm-CPI-1 or -2) did not confer protection against B. malayi L3 challenge infection in gerbils but altered the homing of a significant number of adult worms from the lymphatics to the heart and lungs. CONCLUSION: Bm-CPI vaccination-induced alteration in worm migration is consistent with our previous observations in gerbils vaccinated with B. pahangi excretory-secretory (ES) proteins, which resulted in delayed migration of the L3s and altered the final location of adult worms. Similar observations have also been made in dogs vaccinated with Ancylostoma caninum proteins; an increased number of worms were recovered in the colon and not the expected small intestine. A change in the final niche was also reported in immune versus non-immune hosts of two other gut dwelling nematodes. Vaccination induced alteration of the parasite's final homing might be a rare or a common phenomenon, which unfortunately is rarely recorded. The reason for the alteration in the final niche selection by adult nematode worms following vaccination is unknown and necessitates further investigation.


Subject(s)
Brugia malayi/immunology , Cystatins/immunology , Filariasis/prevention & control , Helminth Proteins/immunology , Animals , Antibodies, Helminth/immunology , Brugia malayi/growth & development , Filariasis/immunology , Filariasis/parasitology , Gerbillinae , Larva , Male , Recombinant Proteins/immunology , Vaccination
8.
Int J Parasitol ; 44(10): 675-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24929131

ABSTRACT

Vaccination of Mongolian gerbils with Brugia malayi cysteine protease inhibitor-2 in which the amino acid Asn66 was mutated to Lys66 (Bm-CPI-2M) resulted in reduced parasite numbers of 48.6% and 48.0% at 42 and 90 days p.i. with B. malayi L3s. Fertility of female worms was also affected at 90 days p.i. In vitro killing of L3s observed in the presence of gerbil peritoneal exudate cells and anti-Bm-CPI-2M sera suggests antibody-dependent cell-mediated cytotoxicity as a putative protective mechanism. These observations suggest that Bm-CPI-2M is a promising prophylactic and anti-fecundity vaccine candidate.


Subject(s)
Brugia malayi/genetics , Brugia malayi/metabolism , Cysteine Proteinase Inhibitors/immunology , Filariasis/prevention & control , Filariasis/parasitology , Gerbillinae/parasitology , Vaccines/immunology , Amino Acid Substitution , Animals , Cysteine Proteinase Inhibitors/metabolism , Female , Gene Expression Regulation , Larva/immunology
SELECTION OF CITATIONS
SEARCH DETAIL