Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cell ; 186(21): 4632-4651.e23, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37776858

ABSTRACT

The dynamics of immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infants and young children by analyzing blood samples and weekly nasal swabs collected before, during, and after infection with Omicron and non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, showed no sign of decay for up to 300 days. Infants mounted a robust mucosal immune response characterized by inflammatory cytokines, interferon (IFN) α, and T helper (Th) 17 and neutrophil markers (interleukin [IL]-17, IL-8, and CXCL1). The immune response in blood was characterized by upregulation of activation markers on innate cells, no inflammatory cytokines, but several chemokines and IFNα. The latter correlated with viral load and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell multi-omics. Together, these data provide a snapshot of immunity to infection during the initial weeks and months of life.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Infant , Humans , Child, Preschool , SARS-CoV-2/metabolism , Multiomics , Cytokines/metabolism , Interferon-alpha , Immunity, Mucosal
2.
Cell ; 185(6): 1025-1040.e14, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35148837

ABSTRACT

During the SARS-CoV-2 pandemic, novel and traditional vaccine strategies have been deployed globally. We investigated whether antibodies stimulated by mRNA vaccination (BNT162b2), including third-dose boosting, differ from those generated by infection or adenoviral (ChAdOx1-S and Gam-COVID-Vac) or inactivated viral (BBIBP-CorV) vaccines. We analyzed human lymph nodes after infection or mRNA vaccination for correlates of serological differences. Antibody breadth against viral variants is lower after infection compared with all vaccines evaluated but improves over several months. Viral variant infection elicits variant-specific antibodies, but prior mRNA vaccination imprints serological responses toward Wuhan-Hu-1 rather than variant antigens. In contrast to disrupted germinal centers (GCs) in lymph nodes during infection, mRNA vaccination stimulates robust GCs containing vaccine mRNA and spike antigen up to 8 weeks postvaccination in some cases. SARS-CoV-2 antibody specificity, breadth, and maturation are affected by imprinting from exposure history and distinct histological and antigenic contexts in infection compared with vaccination.


Subject(s)
Antibodies, Viral , BNT162 Vaccine , COVID-19 , Germinal Center , Antigens, Viral , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccination
3.
Nat Immunol ; 25(1): 41-53, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38036767

ABSTRACT

Bacille Calmette-Guérin (BCG) vaccination can confer nonspecific protection against heterologous pathogens. However, the underlying mechanisms remain mysterious. We show that mice vaccinated intravenously with BCG exhibited reduced weight loss and/or improved viral clearance when challenged with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 B.1.351) or PR8 influenza. Protection was first evident between 14 and 21 d post-vaccination and lasted ∼3 months. Notably, BCG induced a biphasic innate response and robust antigen-specific type 1 helper T cell (TH1 cell) responses in the lungs. MyD88 signaling was essential for innate and TH1 cell responses, and protection against SARS-CoV-2. Depletion of CD4+ T cells or interferon (IFN)-γ activity before infection obliterated innate activation and protection. Single-cell and spatial transcriptomics revealed CD4-dependent expression of IFN-stimulated genes in lung myeloid and epithelial cells. Notably, BCG also induced protection against weight loss after mouse-adapted SARS-CoV-2 BA.5, SARS-CoV and SHC014 coronavirus infections. Thus, BCG elicits integrated organ immunity, where CD4+ T cells feed back on tissue myeloid and epithelial cells to imprint prolonged and broad innate antiviral resistance.


Subject(s)
Adaptive Immunity , BCG Vaccine , Animals , Mice , Humans , Feedback , Vaccination , Weight Loss , Antiviral Agents , Immunity, Innate
4.
Cell ; 184(21): 5432-5447.e16, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34619077

ABSTRACT

Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle (RBD-NP) vaccine protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NPs in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested, although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic.

5.
Nat Immunol ; 23(4): 543-555, 2022 04.
Article in English | MEDLINE | ID: mdl-35288714

ABSTRACT

Despite the success of the BNT162b2 mRNA vaccine, the immunological mechanisms that underlie its efficacy are poorly understood. Here we analyzed the innate and adaptive responses to BNT162b2 in mice, and show that immunization stimulated potent antibody and antigen-specific T cell responses, as well as strikingly enhanced innate responses after secondary immunization, which was concurrent with enhanced serum interferon (IFN)-γ levels 1 d following secondary immunization. Notably, we found that natural killer cells and CD8+ T cells in the draining lymph nodes are the major producers of this circulating IFN-γ. Analysis of knockout mice revealed that induction of antibody and T cell responses to BNT162b2 was not dependent on signaling via Toll-like receptors 2, 3, 4, 5 and 7 nor inflammasome activation, nor the necroptosis or pyroptosis cell death pathways. Rather, the CD8+ T cell response induced by BNT162b2 was dependent on type I interferon-dependent MDA5 signaling. These results provide insights into the molecular mechanisms by which the BNT162b2 vaccine stimulates immune responses.


Subject(s)
CD8-Positive T-Lymphocytes , Vaccines , Adaptive Immunity , Animals , BNT162 Vaccine , Humans , Immunity, Innate , Mice , Vaccines, Synthetic , mRNA Vaccines
6.
Immunity ; 56(4): 864-878.e4, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36996809

ABSTRACT

T cells are a critical component of the response to SARS-CoV-2, but their kinetics after infection and vaccination are insufficiently understood. Using "spheromer" peptide-MHC multimer reagents, we analyzed healthy subjects receiving two doses of the Pfizer/BioNTech BNT162b2 vaccine. Vaccination resulted in robust spike-specific T cell responses for the dominant CD4+ (HLA-DRB1∗15:01/S191) and CD8+ (HLA-A∗02/S691) T cell epitopes. Antigen-specific CD4+ and CD8+ T cell responses were asynchronous, with the peak CD4+ T cell responses occurring 1 week post the second vaccination (boost), whereas CD8+ T cells peaked 2 weeks later. These peripheral T cell responses were elevated compared with COVID-19 patients. We also found that previous SARS-CoV-2 infection resulted in decreased CD8+ T cell activation and expansion, suggesting that previous infection can influence the T cell response to vaccination.


Subject(s)
COVID-19 , Vaccines , Humans , CD8-Positive T-Lymphocytes , BNT162 Vaccine , SARS-CoV-2 , Vaccination , Antibodies, Viral
7.
Nature ; 596(7872): 410-416, 2021 08.
Article in English | MEDLINE | ID: mdl-34252919

ABSTRACT

The emergency use authorization of two mRNA vaccines in less than a year from the emergence of SARS-CoV-2 represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune system to elicit protective immune responses is unknown. Here we used a systems vaccinology approach to comprehensively profile the innate and adaptive immune responses of 56 healthy volunteers who were vaccinated with the Pfizer-BioNTech mRNA vaccine (BNT162b2). Vaccination resulted in the robust production of neutralizing antibodies against the wild-type SARS-CoV-2 (derived from 2019-nCOV/USA_WA1/2020) and, to a lesser extent, the B.1.351 strain, as well as significant increases in antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. Booster vaccination stimulated a notably enhanced innate immune response as compared to primary vaccination, evidenced by (1) a greater frequency of CD14+CD16+ inflammatory monocytes; (2) a higher concentration of plasma IFNγ; and (3) a transcriptional signature of innate antiviral immunity. Consistent with these observations, our single-cell transcriptomics analysis demonstrated an approximately 100-fold increase in the frequency of a myeloid cell cluster enriched in interferon-response transcription factors and reduced in AP-1 transcription factors, after secondary immunization. Finally, we identified distinct innate pathways associated with CD8 T cell and neutralizing antibody responses, and show that a monocyte-related signature correlates with the neutralizing antibody response against the B.1.351 variant. Collectively, these data provide insights into the immune responses induced by mRNA vaccination and demonstrate its capacity to prime the innate immune system to mount a more potent response after booster immunization.


Subject(s)
Adaptive Immunity , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Innate , T-Lymphocytes/immunology , Vaccinology , Adult , Aged , Antibodies, Neutralizing/immunology , Autoantibodies/immunology , BNT162 Vaccine , COVID-19 Vaccines/administration & dosage , Female , Humans , Immunization, Secondary , Male , Middle Aged , Single-Cell Analysis , Spike Glycoprotein, Coronavirus/immunology , Transcription, Genetic , Transcriptome/genetics , Young Adult
8.
Nature ; 594(7862): 253-258, 2021 06.
Article in English | MEDLINE | ID: mdl-33873199

ABSTRACT

The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative1. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).


Subject(s)
Adjuvants, Immunologic , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Subunit/immunology , Alum Compounds , Animals , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , COVID-19/virology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Disease Models, Animal , Immunity, Cellular , Immunity, Humoral , Macaca mulatta/immunology , Male , Oligodeoxyribonucleotides , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Squalene
9.
Allergy ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033312

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, novel nanoparticle-based mRNA vaccines were developed. A small number of individuals developed allergic reactions to these vaccines although the mechanisms remain undefined. METHODS: To understand COVID-19 vaccine-mediated allergic reactions, we enrolled 19 participants who developed allergic events within 2 h of vaccination and 13 controls, nonreactors. Using standard hemolysis assays, we demonstrated that sera from allergic participants induced stronger complement activation compared to nonallergic subjects following ex vivo vaccine exposure. RESULTS: Vaccine-mediated complement activation correlated with anti-polyethelyne glycol (PEG) IgG (but not IgM) levels while anti-PEG IgE was undetectable in all subjects. Depletion of total IgG suppressed complement activation in select individuals. To investigate the effects of vaccine excipients on basophil function, we employed a validated indirect basophil activation test that stratified the allergic populations into high and low responders. Complement C3a and C5a receptor blockade in this system suppressed basophil response, providing strong evidence for complement involvement in vaccine-mediated basophil activation. Single-cell multiome analysis revealed differential expression of genes encoding the cytokine response and Toll-like receptor (TLR) pathways within the monocyte compartment. Differential chromatin accessibility for IL-13 and IL-1B genes was found in allergic and nonallergic participants, suggesting that in vivo, epigenetic modulation of mononuclear phagocyte immunophenotypes determines their subsequent functional responsiveness, contributing to the overall physiologic manifestation of vaccine reactions. CONCLUSION: These findings provide insights into the mechanisms underlying allergic reactions to COVID-19 mRNA vaccines, which may be used for future vaccine strategies in individuals with prior history of allergies or reactions and reduce vaccine hesitancy.

11.
PLoS Pathog ; 17(2): e1009257, 2021 02.
Article in English | MEDLINE | ID: mdl-33556148

ABSTRACT

Stabilized HIV-1 envelope (Env) trimers elicit tier 2 autologous neutralizing antibody (nAb) responses in immunized animals. We previously demonstrated that BG505 SOSIP.664.T332N gp140 (BG505 SOSIP) immunization of rhesus macaques (RM) provided robust protection against autologous intra-vaginal simian-human immunodeficiency virus (SHIV) challenge that was predicted by high serum nAb titers. Here, we show that nAb in these protected RM targeted a glycan hole proximal to residue 465 in gp120 in all cases. nAb also targeted another glycan hole at residues 241/289 and an epitope in V1 at varying frequencies. Non-neutralizing antibodies directed at N611-shielded epitopes in gp41 were also present but were more prevalent in RM with low nAb titers. Longitudinal analysis demonstrated that nAb broadened in some RM during sequential immunization but remained focused in others, the latter being associated with increases in nAb titer. Thirty-eight monoclonal antibodies (mAbs) isolated from a protected RM with an exceptionally high serum neutralization titer bound to the trimer in ELISA, and four of the mAbs potently neutralized the BG505 Env pseudovirus (PV) and SHIV. The four neutralizing mAbs were clonally related and targeted the 465 glycan hole to varying degrees, mimicking the serum. The data demonstrate that the C3/465 glycan hole cluster was the dominant neutralization target in high titer protected RM, despite other co-circulating neutralizing and non-neutralizing specificities. The isolation of a neutralizing mAb family argues that clonotype expansion occurred during BG505 SOSIP immunization, leading to high titer, protective nAb and setting a desirable benchmark for HIV vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV-1/immunology , Polysaccharides/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Epitopes/immunology , Female , HIV Infections/immunology , HIV Infections/virology , Humans , Immunization , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Vaccination
12.
J Biol Chem ; 293(30): 11687-11708, 2018 07 27.
Article in English | MEDLINE | ID: mdl-29773649

ABSTRACT

HIV-1 subtype C (HIV-1C) may duplicate longer amino acid stretches in the p6 Gag protein, leading to the creation of an additional Pro-Thr/Ser-Ala-Pro (PTAP) motif necessary for viral packaging. However, the biological significance of a duplication of the PTAP motif for HIV-1 replication and pathogenesis has not been experimentally validated. In a longitudinal study of two different clinical cohorts of select HIV-1 seropositive, drug-naive individuals from India, we found that 8 of 50 of these individuals harbored a mixed infection of viral strains discordant for the PTAP duplication. Conventional and next-generation sequencing of six primary viral quasispecies at multiple time points disclosed that in a mixed infection, the viral strains containing the PTAP duplication dominated the infection. The dominance of the double-PTAP viral strains over a genetically similar single-PTAP viral clone was confirmed in viral proliferation and pairwise competition assays. Of note, in the proximity ligation assay, double-PTAP Gag proteins exhibited a significantly enhanced interaction with the host protein tumor susceptibility gene 101 (Tsg101). Moreover, Tsg101 overexpression resulted in a biphasic effect on HIV-1C proliferation, an enhanced effect at low concentration and an inhibitory effect only at higher concentrations, unlike a uniformly inhibitory effect on subtype B strains. In summary, our results indicate that the duplication of the PTAP motif in the p6 Gag protein enhances the replication fitness of HIV-1C by engaging the Tsg101 host protein with a higher affinity. Our results have implications for HIV-1 pathogenesis, especially of HIV-1C.


Subject(s)
DNA-Binding Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Transcription Factors/metabolism , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/metabolism , Adult , Amino Acid Motifs , Cells, Cultured , DNA-Binding Proteins/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Female , HIV Infections/genetics , HIV-1/chemistry , HIV-1/genetics , Host-Pathogen Interactions , Humans , Longitudinal Studies , Male , Middle Aged , Protein Interaction Maps , Transcription Factors/genetics , gag Gene Products, Human Immunodeficiency Virus/chemistry , gag Gene Products, Human Immunodeficiency Virus/genetics
13.
Thorax ; 76(10): 961, 2021 10.
Article in English | MEDLINE | ID: mdl-34088785
14.
JCI Insight ; 9(5)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456511

ABSTRACT

Understanding the immune responses to SARS-CoV-2 vaccination is critical to optimizing vaccination strategies for individuals with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here, we comprehensively analyzed innate and adaptive immune responses in 19 patients with SLE receiving a complete 2-dose Pfizer-BioNTech mRNA vaccine (BNT162b2) regimen compared with a control cohort of 56 healthy control (HC) volunteers. Patients with SLE exhibited impaired neutralizing antibody production and antigen-specific CD4+ and CD8+ T cell responses relative to HC. Interestingly, antibody responses were only altered in patients with SLE treated with immunosuppressive therapies, whereas impairment of antigen-specific CD4+ and CD8+ T cell numbers was independent of medication. Patients with SLE also displayed reduced levels of circulating CXC motif chemokine ligands, CXCL9, CXCL10, CXCL11, and IFN-γ after secondary vaccination as well as downregulation of gene expression pathways indicative of compromised innate immune responses. Single-cell RNA-Seq analysis reveals that patients with SLE showed reduced levels of a vaccine-inducible monocyte population characterized by overexpression of IFN-response transcription factors. Thus, although 2 doses of BNT162b2 induced relatively robust immune responses in patients with SLE, our data demonstrate impairment of both innate and adaptive immune responses relative to HC, highlighting a need for population-specific vaccination studies.


Subject(s)
COVID-19 , Lupus Erythematosus, Systemic , Humans , BNT162 Vaccine , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Vaccination
15.
Sci Immunol ; 9(94): eadi8039, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579013

ABSTRACT

Vaccine adjuvants increase the breadth of serum antibody responses, but whether this is due to the generation of antigen-specific B cell clones with distinct specificities or the maturation of memory B cell clones that produce broadly cross-reactive antibodies is unknown. Here, we longitudinally analyzed immune responses in healthy adults after two-dose vaccination with either a virus-like particle COVID-19 vaccine (CoVLP), CoVLP adjuvanted with AS03 (CoVLP+AS03), or a messenger RNA vaccination (mRNA-1273). CoVLP+AS03 enhanced the magnitude and durability of circulating antibodies and antigen-specific CD4+ T cell and memory B cell responses. Antigen-specific CD4+ T cells in the CoVLP+AS03 group at day 42 correlated with antigen-specific memory B cells at 6 months. CoVLP+AS03 induced memory B cell responses, which accumulated somatic hypermutations over 6 months, resulting in enhanced neutralization breadth of monoclonal antibodies. Furthermore, the fraction of broadly neutralizing antibodies encoded by memory B cells increased between day 42 and 6 months. These results indicate that AS03 enhances the antigenic breadth of B cell memory at the clonal level and induces progressive maturation of the B cell response.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Polysorbates , Squalene , alpha-Tocopherol , Adult , Humans , Memory B Cells , COVID-19 Vaccines , Antibodies, Viral , COVID-19/prevention & control , Drug Combinations
16.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36711543

ABSTRACT

The rapid emergence of SARS-CoV-2 variants that evade immunity to vaccination has placed a global health imperative on the development of therapeutic countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent pan-sarbecovirus antibodies from non-human primates vaccinated with an AS03 adjuvanted subunit vaccine against SARS-CoV-2 that recognize conserved epitopes in the receptor binding domain (RBD) with femtomolar affinities. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells for at least one year following primary vaccination. 514 monoclonal antibodies (mAbs) were generated from antigen-specific memory B cells. Antibodies isolated at 5 to 12 months following vaccination displayed greater potency and breadth, relative to those identified at 1.4 months. Notably, 15 out of 338 (∼4.4%) antibodies isolated at 1.4∼6 months after the primary vaccination showed extraordinary neutralization potency against SARS-CoV-2 omicron BA.1, despite the absence of BA.1 neutralization in serum. Two of them, 25F9 and 20A7, neutralized authentic clade Ia sarbecoviruses (SARS-CoV, WIV-1, SHC014) and clade Ib sarbecoviruses (SARS-CoV-2 D614G, SARS-CoV-2 BA.1, Pangolin-GD) with half-maximal inhibition concentrations of (0.85 ng/ml, 3 ng/ml, 6 ng/ml, 6 ng/ml, 42 ng/ml, 6 ng/ml) and (13 ng/ml, 2 ng/ml, 18 ng/ml, 9 ng/ml, 6 ng/ml, 345 ng/ml), respectively. Furthermore, 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants of concern and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1 and XBB variants. X-ray crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved RBD sites. In vivo prophylactic protection of 25F9, 20A7 and 27A12 was confirmed in aged Balb/c mice. Notably, administration of 25F9 provided complete protection against SARS-CoV-2, SARS-CoV-2 BA.1, SARS-CoV, and SHC014 challenge, underscoring that these mAbs are promising pan-sarbecovirus therapeutic antibodies. One Sentence Summary: Extremely potent pan-sarbecovirus neutralizing antibodies.

17.
J Clin Invest ; 133(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-36951954

ABSTRACT

BackgroundMaintaining durable immunity following vaccination represents a major challenge, but whether mRNA booster vaccination improves durability is unknown.MethodsWe measured antibody responses in 55 healthy adults, who received a booster dose of the Pfizer-BioNTech or Moderna vaccine against SARS-CoV-2 and calculated the half-life of the antibody titers. We also measured memory B and T cell responses in a subset of 28 participants. In 13 volunteers who received a second booster vaccine, we measured serum antibody titers and memory B and T cell responses.ResultsThe booster (third immunization) dose at 6 to 10 months increased the half-life of the serum-neutralizing antibody (nAb) titers to 76 days from 56 to 66 days after the primary 2-dose vaccination. A second booster dose (fourth immunization) a year after the primary vaccination further increased the half-life to 88 days. However, despite this modestly improved durability in nAb responses against the ancestral (WA.1) strain, there was a loss of neutralization capacity against the Omicron subvariants BA.2.75.2, BQ.1.1, and XBB.1.5 (48-, 71-, and 66-fold drop in titers, respectively, relative to the WA.1 strain). Although only 45% to 65% of participants demonstrated a detectable nAb titer against the newer variants after the booster (third dose), the response declined to below the detection limit in almost all individuals by 6 months. In contrast, booster vaccination induced antigen-specific memory B and T cells that persisted for at least 6 months.ConclusionThe durability of serum antibody responses improves only marginally following booster immunizations with the Pfizer-BioNTech or Moderna mRNA vaccines.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Vaccination , RNA, Messenger , Immunity , Antibodies, Viral , Antibodies, Neutralizing
18.
Nat Commun ; 14(1): 2149, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069151

ABSTRACT

While the rapid development of COVID-19 vaccines has been a scientific triumph, the need remains for a globally available vaccine that provides longer-lasting immunity against present and future SARS-CoV-2 variants of concern (VOCs). Here, we describe DCFHP, a ferritin-based, protein-nanoparticle vaccine candidate that, when formulated with aluminum hydroxide as the sole adjuvant (DCFHP-alum), elicits potent and durable neutralizing antisera in non-human primates against known VOCs, including Omicron BQ.1, as well as against SARS-CoV-1. Following a booster ~one year after the initial immunization, DCFHP-alum elicits a robust anamnestic response. To enable global accessibility, we generated a cell line that can enable production of thousands of vaccine doses per liter of cell culture and show that DCFHP-alum maintains potency for at least 14 days at temperatures exceeding standard room temperature. DCFHP-alum has potential as a once-yearly (or less frequent) booster vaccine, and as a primary vaccine for pediatric use including in infants.


Subject(s)
COVID-19 , Geranium , Nanoparticles , Animals , Humans , COVID-19 Vaccines , Ferritins , COVID-19/prevention & control , SARS-CoV-2 , Immune Sera , Primates , Antibodies, Neutralizing , Antibodies, Viral
19.
medRxiv ; 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36778389

ABSTRACT

The dynamics of innate and adaptive immunity to infection in infants remain obscure. Here, we used a multi-omics approach to perform a longitudinal analysis of immunity to SARS-CoV-2 infection in infants and young children in the first weeks and months of life by analyzing blood samples collected before, during, and after infection with Omicron and Non-Omicron variants. Infection stimulated robust antibody titers that, unlike in adults, were stably maintained for >300 days. Antigen-specific memory B cell (MCB) responses were durable for 150 days but waned thereafter. Somatic hypermutation of V-genes in MCB accumulated progressively over 9 months. The innate response was characterized by upregulation of activation markers on blood innate cells, and a plasma cytokine profile distinct from that seen in adults, with no inflammatory cytokines, but an early and transient accumulation of chemokines (CXCL10, IL8, IL-18R1, CSF-1, CX3CL1), and type I IFN. The latter was strongly correlated with viral load, and expression of interferon-stimulated genes (ISGs) in myeloid cells measured by single-cell transcriptomics. Consistent with this, single-cell ATAC-seq revealed enhanced accessibility of chromatic loci targeted by interferon regulatory factors (IRFs) and reduced accessibility of AP-1 targeted loci, as well as traces of epigenetic imprinting in monocytes, during convalescence. Together, these data provide the first snapshot of immunity to infection during the initial weeks and months of life.

20.
Sci Transl Med ; 15(695): eadg7404, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37163615

ABSTRACT

The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that evade immunity elicited by vaccination has placed an imperative on the development of countermeasures that provide broad protection against SARS-CoV-2 and related sarbecoviruses. Here, we identified extremely potent monoclonal antibodies (mAbs) that neutralized multiple sarbecoviruses from macaques vaccinated with AS03-adjuvanted monovalent subunit vaccines. Longitudinal analysis revealed progressive accumulation of somatic mutation in the immunoglobulin genes of antigen-specific memory B cells (MBCs) for at least 1 year after primary vaccination. Antibodies generated from these antigen-specific MBCs at 5 to 12 months after vaccination displayed greater potency and breadth relative to those identified at 1.4 months. Fifteen of the 338 (about 4.4%) antibodies isolated at 1.4 to 6 months after the primary vaccination showed potency against SARS-CoV-2 BA.1, despite the absence of serum BA.1 neutralization. 25F9 and 20A7 neutralized authentic clade 1 sarbecoviruses (SARS-CoV, WIV-1, SHC014, SARS-CoV-2 D614G, BA.1, and Pangolin-GD) and vesicular stomatitis virus-pseudotyped clade 3 sarbecoviruses (BtKY72 and PRD-0038). 20A7 and 27A12 showed potent neutralization against all SARS-CoV-2 variants and multiple Omicron sublineages, including BA.1, BA.2, BA.3, BA.4/5, BQ.1, BQ.1.1, and XBB. Crystallography studies revealed the molecular basis of broad and potent neutralization through targeting conserved sites within the RBD. Prophylactic protection of 25F9, 20A7, and 27A12 was confirmed in mice, and administration of 25F9 particularly provided complete protection against SARS-CoV-2, BA.1, SARS-CoV, and SHC014 challenge. These data underscore the extremely potent and broad activity of these mAbs against sarbecoviruses.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Mice , Broadly Neutralizing Antibodies , COVID-19 Vaccines , Macaca , SARS-CoV-2 , COVID-19/prevention & control , Immunization , Vaccination , Antibodies, Monoclonal , Antibodies, Viral , Antibodies, Neutralizing
SELECTION OF CITATIONS
SEARCH DETAIL