Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Int J Mol Sci ; 24(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37373527

ABSTRACT

Their widespread presence throughout the vasculature, coupled with their reactivity, and thereby to their potential to release reactive oxidative species, or to utilize their anti-oxidative capacities, has promoted much discussion of the role(s) of red blood cells (RBCs) in the progression of health or, alternatively, a wide range of disease states. Moreover, these role(s) have been linked to the development of adhesiveness and, in fact, thereby to the essential pathway to their eventual clearance, e.g., by macrophages in the spleen. These disparate roles coupled with the mechanisms involved are reviewed and given. Following an analysis, novel perspectives are provided; these perspectives can lead to novel assays for identifying the potential for RBC adhesiveness as suggested herein. We describe this paradigm, that involves RBC adhesiveness, hemolysis, and ghost formation, with examples including, inter alia, the progression of atherosclerosis and the suppression of tumor growth along with other disease states.


Subject(s)
Erythrocytes , Hemolysis , Humans , Adhesiveness , Erythrocytes/metabolism , Erythrocyte Membrane , Cell Death
2.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946824

ABSTRACT

Red blood cells (RBCs) serve a variety of functions beyond mere oxygen transport both in health and pathology. Notably, RRx-001, a minimally toxic pleiotropic anticancer agent with macrophage activating and vascular normalization properties currently in Phase III trials, induces modification to RBCs which could promote vascular adhesion similar to sickle cells. This study assessed whether RBCs exposed to RRx-001 adhere to the tumor microvasculature and whether this adhesion alters tumor viability. We next investigated the biomechanics of RBC adhesion in the context of local inflammatory cytokines after treatment with RRx-001 as a potential mechanism for preferential tumor aggregation. Human HEP-G2 and HT-29 tumor cells were subcutaneously implanted into nu/nu mice and were infused with RRx-001-treated and Technetium-99m (99mTc)-labeled blood. RBC adhesion was quantified in an in vitro human umbilical vein endothelial cell (HUVEC) assay under both normoxic and hypoxic conditions with administration of either lipopolysaccharide (LPS) or Tumor necrosis alpha (TNFα) to mimic the known inflammation in the tumor microenvironment. One hour following administration of 99mTc labeled RBCs treated with 10 mg/kg RRx-001, we observed an approximate 2.0-fold and 1.5-fold increase in 99mTc-labeled RBCs compared to vehicle control in HEPG2 and HT-29 tumor models, respectively. Furthermore, we observed an approximate 40% and 36% decrease in HEP-G2 and HT-29 tumor weight, respectively, following treatment with RRx-001. To quantify RBC adhesive potential, we determined τ50, or the shear stress required for 50% disassociation of RBCs from HUVECs. After administration of TNF-α under normoxia, τ50 was determined to be 4.5 dynes/cm2 (95% CI: 4.3-4.7 dynes/cm2) for RBCs treated with 10 µM RRx-001, which was significantly different (p < 0.05) from τ50 in the absence of treatment. Under hypoxic conditions, the difference of τ50 with (4.8 dynes/cm2; 95% CI: 4.6-5.1 dynes/cm2) and without (2.6 dynes/cm2; 95% CI: 2.4-2.8 dynes/cm2) 10 µM RRx-001 treatment was exacerbated (p = 0.05). In conclusion, we demonstrated that RBCs treated with RRx-001 preferentially aggregate in HEP-G2 and HT-29 tumors, likely due to interactions between RRx-001 and cysteine residues within RBCs. Furthermore, RRx-001 treated RBCs demonstrated increased adhesive potential to endothelial cells upon introduction of TNF-α and hypoxia suggesting that RRx-001 may induce preferential adhesion in the tumor but not in other tissues with endothelial dysfunction due to conditions prevalent in older cancer patients such as heart disease or diabetic vasculopathy.


Subject(s)
Antineoplastic Agents/pharmacology , Azetidines/pharmacology , Endothelial Cells/cytology , Erythrocyte Membrane/drug effects , Nitro Compounds/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Azetidines/therapeutic use , Cell Adhesion/drug effects , Cell Hypoxia , Cysteine/chemistry , Cytokines/metabolism , Endothelial Cells/chemistry , Erythrocyte Aggregation/drug effects , Erythrocyte Membrane/chemistry , HT29 Cells/transplantation , Hep G2 Cells/transplantation , Human Umbilical Vein Endothelial Cells , Humans , Lipopolysaccharides/pharmacology , Membrane Lipids/biosynthesis , Mice , Mice, Nude , Neoplasms/blood supply , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/drug therapy , Nitro Compounds/therapeutic use , Phosphatidylserines/biosynthesis , Receptors, Cell Surface/biosynthesis , Shear Strength , Tumor Microenvironment , Tumor Necrosis Factor-alpha/pharmacology
3.
Biophys J ; 117(9): 1599-1614, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31604520

ABSTRACT

Herein, we consider the process of force development along the adhesome within cell focal adhesions. Our model adhesome consists of the actin cytoskeleton-vinculin-talin-integrin-ligand-extracellular matrix-substrate force train. We specifically consider the effects of substrate stiffness on the force levels expected along the train and on the traction stresses they create at the substrate. We find that significant effects of substrate stiffness are manifest within each constitutive component of the force train and on the density and distribution of integrin/ligand anchorage points with the substrate. By following each component of the force train, we are able to delineate specific gaps in the quantitative descriptions of bond survival that must be addressed so that improved quantitative forecasts become possible. Our analysis provides, however, a rational description for the various levels of traction stresses that have been reported and of the effect of substrate stiffness. Our approach has the advantage of being quite clear as to how each constituent contributes to the net development of force and traction stress. We demonstrate that to provide truly quantitative forecasts for traction stress, a far more detailed description of integrin/ligand density and distribution is required. Although integrin density is already a well-recognized important feature of adhesion, our analysis places a finer point on it in the manner of how we evaluate the magnitude of traction stress. We provide mechanistic insight into how understanding of this vital element of the adhesion process may proceed by addressing mechanistic causes of integrin clustering that may lead to patterning.


Subject(s)
Mechanotransduction, Cellular , Stress, Physiological , Actins/metabolism , Animals , Biomechanical Phenomena , Cell Adhesion , Humans , Integrins/metabolism , Ligands , Models, Biological , Probability , Protein Multimerization , Talin/metabolism , Vinculin/metabolism
4.
Biophys J ; 114(6): 1440-1454, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29590601

ABSTRACT

We explore, herein, the hypothesis that transport of molecules or ions into erythrocytes may be affected and directly stimulated by the dynamics of the spectrin/actin skeleton. Skeleton/actin motions are driven by thermal fluctuations that may be influenced by ATP hydrolysis as well as by structural alterations of the junctional complexes that connect the skeleton to the cell's lipid membrane. Specifically, we focus on the uptake of glucose into erythrocytes via glucose transporter 1 and on the kinetics of glucose disassociation at the endofacial side of glucose transporter 1. We argue that glucose disassociation is affected by both hydrodynamic forces induced by the actin/spectrin skeleton and by probable contact of the swinging 37-nm-long F-actin protofilament with glucose, an effect we dub the "stickball effect." Our hypothesis and results are interpreted within the framework of the kinetic measurements and compartmental kinetic models of Carruthers and co-workers; these experimental results and models describe glucose disassociation as the "slow step" (i.e., rate-limiting step) in the uptake process. Our hypothesis is further supported by direct simulations of skeleton-enhanced transport using our molecular-based models for the actin/spectrin skeleton as well as by experimental measurements of glucose uptake into cells subject to shear deformations, which demonstrate the hydrodynamic effects of advection. Our simulations have, in fact, previously demonstrated enhanced skeletal dynamics in cells in shear deformations, as they occur naturally within the skeleton, which is an effect also supported by experimental observations.


Subject(s)
Erythrocytes/cytology , Erythrocytes/metabolism , Sugars/metabolism , Biological Transport , Glucose Transporter Type 1/chemistry , Glucose Transporter Type 1/metabolism , Humans , Models, Molecular , Protein Conformation
5.
Biophys J ; 113(4): 900-912, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28834726

ABSTRACT

Prospects of vesiculation occurring during splenic flow of erythrocytes are addressed via model simulations of RBC flow through the venous slits of the human spleen. Our model is multiscale and contains a thermally activated rate-dependent description of the entropic elasticity of the RBC spectrin cytoskeleton, including domain unfolding/refolding. Our model also includes detail of the skeleton attachment to the fluidlike lipid bilayer membrane, including a specific accounting for the expansion/contraction of the skeleton that may occur via anchor protein diffusive motion, that is, band 3 and glycophorin, through the membrane. This ability allows us to follow the change in anchor density and thereby the strength of the skeleton/membrane attachment. We define a negative pressure between the skeleton/membrane connection that promotes separation; critical levels for this are estimated using published data on the work of adhesion of this connection. By following the maximum range of negative pressure, along with the observed slight decrease in skeletal density, we conclude that there must be biochemical influences that probably include binding of degraded hemoglobin, among other things, that significantly reduce effective attachment density. These findings are consistent with reported trends in vesiculation that are believed to occur in cases of various hereditary anemias and during blood storage. Our findings also suggest pathways for further study of erythrocyte vesiculation that point to the criticality of understanding the biochemical phenomena involved with cytoskeleton/membrane attachment.


Subject(s)
Cytoskeleton/metabolism , Erythrocytes/cytology , Lipid Bilayers/metabolism , Spleen/blood supply , Biomechanical Phenomena , Humans , Models, Biological
6.
Diagnostics (Basel) ; 11(6)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072241

ABSTRACT

The red blood cell has become implicated in the progression of a range of diseases; mechanisms by which red cells are involved appear to include the transport of inflammatory species via red cell-derived vesicles. We review this role of RBCs in diseases such as diabetes mellitus, sickle cell anemia, polycythemia vera, central retinal vein occlusion, Gaucher disease, atherosclerosis, and myeloproliferative neoplasms. We propose a possibly unifying, and novel, paradigm for the inducement of RBC vesiculation during vascular flow of red cells adhered to the vascular endothelium as well as to the red pulp of the spleen. Indeed, we review the evidence for this hypothesis that links physiological conditions favoring both vesiculation and enhanced RBC adhesion and demonstrate the veracity of this hypothesis by way of a specific example occurring in splenic flow which we argue has various renderings in a wide range of vascular flows, in particular microvascular flows. We provide a mechanistic basis for membrane loss and the formation of lysed red blood cells in the spleen that may mediate their turnover. Our detailed explanation for this example also makes clear what features of red cell deformability are involved in the vesiculation process and hence require quantification and a new form of quantitative indexing.

7.
Biomech Model Mechanobiol ; 20(1): 31-53, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32656697

ABSTRACT

Vesiculation is a ubiquitous process undergone by most cell types and serves a variety of vital cell functions; vesiculation from erythrocytes, in particular, is a well-known example and constitutes a self-protection mechanism against premature clearance, inter alia. Herein, we explore a paradigm that red blood cell derived vesicles may form within the microvascular, in intense shear flow, where cells become adhered to either other cells or the extracellular matrix, by forming tethers or an evagination. Adherence may be enhanced, or caused, by diseased states or chemical anomalies as are discussed herein. The mechanisms for such processes are detailed via numerical simulations that are patterned directly from video-recorded cell microflow within the splenic venous sinus (MacDonald et al. 1987), as included, e.g., as Supplementary Material. The mechanisms uncovered highlight the necessity of accounting for remodeling of the erythrocyte's membrane skeleton and, specifically, for the time scales associated with that process that is an integral part of cell deformation. In this way, the analysis provides pointed, and vital, insights into the notion of what the, often used phrase, cell deformability actually entails in a more holistic manner. The analysis also details what data are required to make further quantitative descriptions possible and suggests experimental pathways for acquiring such.


Subject(s)
Cell Communication , Microvessels/physiology , Regional Blood Flow/physiology , Aging/pathology , Biomechanical Phenomena , Cell Adhesion , Endothelial Cells/cytology , Erythrocytes/physiology , Humans , Spleen/blood supply , Spleen/ultrastructure
8.
J Struct Biol ; 170(3): 484-500, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20109552

ABSTRACT

Direct experimental probes of the mechanical response of the biopolymer framework of nacre extracted from the shell of the gastropod Haliotis rufescens have been performed. Both monotonic tensile, and time dependent relaxation, tests revealed that the tissue comprising the interlamellar layers within nacre obeyed a simple constitutive model conforming to the visco-elastic standard linear solid, with time constants in the range tau=140+/-4s. We conclude that the behavior is essentially that imparted by the chitin core of these layers. Interestingly we find that the chitin network of the core appears to be connected over multiple CaCO(3) tiles. A simple composite model is formulated and used to interpret the observed behavior.


Subject(s)
Gastropoda/chemistry , Animals , Biomechanical Phenomena , Biopolymers/chemistry , Calcification, Physiologic , Calcium Carbonate/chemistry , Chitin/chemistry , Crystallization , Elasticity , Gastropoda/physiology , Gastropoda/ultrastructure , Macromolecular Substances/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Structure , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Tensile Strength
9.
Biomech Model Mechanobiol ; 19(5): 1361-1388, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32040651

ABSTRACT

We overview recent advances in the theoretical modeling, in particular via numerical simulation, of various vital human erythrocyte phenomena. The review is novel in how it interconnects a range of analysis within a coherent framework and focuses on extracting from them specific suggestions for experimental studies focused on, either validation of the analysis' mechanistic basis, or uncovering heretofore unrecognized effects and mechanistic understanding. In some cases, new analysis is described to fill in gaps and expand on previously published findings. Moreover, the presentation makes clear what new knowledge is required to further advance what is envisioned to be a truly quantitative approach to understanding the human blood cell. The entire treatment is based on, and designed to directly couple to, experimental observations. A specific goal is to point to a more quantitative and predictive approach to understanding human erythrocyte phenomena and their connectivity. Among the phenomena analyzed are: (1) membrane skeletal dynamics, per se, and how it is involved in (2) transmembrane molecular transport, e.g., glucose uptake; (3) red cell vesiculation, especially as it may occur during splenic flow; and (4) how skeletal dynamics affects both phenomena. Red cell flow is analyzed in complex flows such as oscillatory shear flow and during cell passage through splenic-like venous slits. We show, and perhaps remarkably, that the deformation modes that develop during both, apparently disparate, flows are actually quite similar. This finding suggests a novel methodology for experimentally studying splenic-like vesiculation. Additional analysis is presented that examines the effect of skeletal defects, including disruptions in its membrane connectivity, on molecular transport and vesiculation. As an example, we explore a reported effect of skeletal disruptions at the anion transporter, Band 3, on glucose uptake and efflux at the GLUT1 which are connected via the spectrin skeleton.


Subject(s)
Computer Simulation , Erythrocytes/metabolism , Models, Biological , Biomechanical Phenomena , Erythrocytes/physiology , Erythrocytes/ultrastructure , Humans , Temperature
10.
Biophys J ; 94(7): 2529-45, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18065469

ABSTRACT

Spectrin (Sp), a key component of the erythrocyte membrane, is routinely stretched to near its fully folded contour length during cell deformations. Such dynamic loading may induce domain unfolding as suggested by recent experiments. Herein we develop a model to describe the folding/unfolding of spectrin during equilibrium or nonequilibrium extensions. In both cases, our model indicates that there exists a critical extension beyond which unfolding occurs. We further deploy this model, together with a three-dimensional model of the junctional complex in the erythrocyte membrane, to explore the effect of Sp unfolding on the membrane's mechanical properties, and on the thermal fluctuation of membrane-attached beads. At large deformations our results show a distinctive strain-induced unstiffening behavior, manifested in the slow decrease of the shear modulus, and accompanied by an increase in bead fluctuation. Bead fluctuation is also found to be influenced by mode switching, a phenomenon predicted by our three-dimensional model. The amount of stiffness reduction, however, is modest compared with that reported in experiments. A possible explanation for the discrepancy is the occurrence of spectrin head-to-head disassociation which is also included within our modeling framework and used to analyze bead motion as observed via experiment.


Subject(s)
Erythrocyte Membrane/chemistry , Erythrocyte Membrane/physiology , Models, Cardiovascular , Models, Chemical , Models, Molecular , Spectrin/chemistry , Spectrin/ultrastructure , Computer Simulation , Elasticity , Membrane Fluidity/physiology , Membrane Proteins/chemistry , Membrane Proteins/ultrastructure , Protein Conformation , Protein Denaturation , Protein Folding , Stress, Mechanical
11.
J Struct Biol ; 163(1): 61-75, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18538582

ABSTRACT

We have performed a macromolecular structural analysis of the interlamellar and intertabular parts of the organic framework of the nacreous part of the shell of Haliotis rufescens, including the identification of structural chitin. Using histochemical optical microscopy we have mapped the locations of carboxylates and sulfates of proteins and chitin on the surfaces and within the core of the interlamellar layers and the intertabular matrix that together form the external organic matrix of composite nacre. This extends the earlier work of Nudelmann et al. [Nudelman, F., Gotliv, B.A., Addadi, L. and Weiner, S. 2006. Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonite tablet in nacre. J. Struct. Biol. 153, 176-187] and Crenshaw and Ristedt [Crenshaw, M.A., Ristedt, H. 1976. The histochemical localization of reactive groups in septal nacre from Nautilus pompilius. In: Omori, M., Watabe, N. (Eds.) The Mechanisms of Biomineralization in Animals and Plants. Tokai University Press, Toyko] on Nautilus pompilius. Our mapping identifies distinct regions, defined by the macromolecular groups, including what is proposed to be the sites of CaCO(3) nucleation and that play a key role in nacre growth. Using AFM scanning probe microscopy we have identified a fibrous core within the framework that we associate with chitin. The structural picture that is evolved is then used to develop a simple structural model for the organic framework which is shown to be consistent with mechanical property measurements. The role of the intracrystalline matrix within the nacre tablets in mediating nacre's mechanical response is noted within the framework of our model.


Subject(s)
Calcification, Physiologic , Extracellular Matrix/chemistry , Mollusca/anatomy & histology , Animals , Calcium Carbonate/analysis , Chitin/analysis , Histocytochemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Mollusca/ultrastructure , Proteins/analysis
12.
Front Physiol ; 9: 1607, 2018.
Article in English | MEDLINE | ID: mdl-30505281

ABSTRACT

We demonstrate that erythrocyte deformations, specifically of a type as occur in splenic flow (Zhu et al., 2017), and of the type that promote vesiculation can be caused by simple, yet tailored, oscillatory shear flow. We show that such oscillatory shear flow provides an ideal environment to explore a wide variety of metabolic and biochemical effects that promote erythrocyte vesiculation. Deformation details, typical of splenic flow, such as in-folding and implications for membrane/skeleton interaction are demonstrated and quantitatively analyzed. We introduce a theoretical, essentially analytical, vesiculation model that directly couples to our more complex numerical, multilevel, model that clearly delineates various fundamental elements, i.e., sub-processes, that are involved and mediate the vesiculation process. This analytical model highlights particulary important vesiculation precursors such as areas of membrane/skeleton disruptions that trigger the vesiculation process. We demonstrate, using flow cytometry, that the deformations we experimentally induce on cells, and numerically simulate, do not induce lethal forms of cell damage but do induce vesiculation as theoretically forecasted. This, we demonstrate, provides a direct link to cell membrane/skeletal damage such as is associated with metabolic and aging damage. An additional noteworthy feature of this approach is the avoidance of artificial devices, e.g., micro-fluidic chambers, in which deformations and their time scales are often unrepresentative of physiological processes such as splenic flow.

13.
Phys Rev E ; 97(4-1): 042401, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29758721

ABSTRACT

To study the significance of advection in the transport of solutes, or particles, within thin biological gaps (channels), we examine theoretically the process driven by stochastic fluid flow caused by random thermal structural motion, and we compare it with transport via diffusion. The model geometry chosen resembles the synaptic cleft; this choice is motivated by the cleft's readily modeled structure, which allows for well-defined mechanical and physical features that control the advection process. Our analysis defines a Péclet-like number, A^{D}, that quantifies the ratio of time scales of advection versus diffusion. Another parameter, A^{M}, is also defined by the analysis that quantifies the full potential extent of advection in the absence of diffusion. These parameters provide a clear and compact description of the interplay among the well-defined structural, geometric, and physical properties vis-a[over ̀]-vis the advection versus diffusion process. For example, it is found that A^{D}∼1/R^{2}, where R is the cleft diameter and hence diffusion distance. This curious, and perhaps unexpected, result follows from the dependence of structural motion that drives fluid flow on R. A^{M}, on the other hand, is directly related (essentially proportional to) the energetic input into structural motion, and thereby to fluid flow, as well as to the mechanical stiffness of the cleftlike structure. Our model analysis thus provides unambiguous insight into the prospect of competition of advection versus diffusion within biological gaplike structures. The importance of the random, versus a regular, nature of structural motion and of the resulting transient nature of advection under random motion is made clear in our analysis. Further, by quantifying the effects of geometric and physical properties on the competition between advection and diffusion, our results clearly demonstrate the important role that metabolic energy (ATP) plays in this competitive process.


Subject(s)
Dendrites/metabolism , Models, Neurological , Biological Transport , Cell Membrane/metabolism , Diffusion
14.
Blood Adv ; 5(21): 4422-4425, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34570212
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 1): 031904, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20365767

ABSTRACT

To quantitatively predict the mechanical response and mechanically induced remodeling of red blood cells, we developed a multiscale method to correlate distributions of internal stress with overall cell deformation. This method consists of three models at different length scales: in the complete cell level the membrane is modeled as two distinct layers of continuum shells using finite element method (Level III), in which the skeleton-bilayer interactions are depicted as a slide in the lateral (i.e., in-plane) direction (caused by the mobility of the skeleton-bilayer pinning points) and a normal contact force; the constitutive laws of the inner layer (the protein skeleton) are obtained from a molecular-based model (Level II); the mechanical properties of the spectrin (Sp, a key component of the skeleton), including its folding/unfolding reactions, are obtained with a stress-strain model (Level I). Model verification is achieved through comparisons with existing numerical and experimental studies in terms of the resting shape of the cell as well as cell deformations induced by micropipettes and optical tweezers. Detailed distributions of the interaction force between the lipid bilayer and the skeleton that may cause their dissociation and lead to phenomena such as vesiculation are predicted. Specifically, our model predicts correlation between the occurrence of Sp unfolding and increase in the mechanical load upon individual skeleton-bilayer pinning points. Finally a simulation of the necking process after skeleton-bilayer dissociation, a precursor of vesiculation, is conducted.


Subject(s)
Erythrocyte Membrane/chemistry , Erythrocyte Membrane/ultrastructure , Membrane Fluidity , Membrane Lipids/chemistry , Models, Biological , Models, Chemical , Models, Molecular , Computer Simulation
16.
Biophys J ; 93(2): 386-400, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17449663

ABSTRACT

To investigate the nanomechanics of the erythrocyte membrane we developed a hybrid model that couples the actin-spectrin network to the lipid bilayer. This model features a Fourier space Brownian dynamics model of the bilayer, a Brownian dynamics model of the actin protofilament, and a modified wormlike-chain model of the spectrin (including a cable-dynamics model to predict the oscillation in tension). This model enables us to predict the nanomechanics of single or multiple units of the protein network, the lipid bilayer, and the effect of their interactions. The present work is focused on the attitude of the actin protofilament at the equilibrium states coupled with the elevations of the lipid bilayer through their primary linkage at the suspension complex in deformations. Two different actin-spectrin junctions are considered at the junctional complex. With a point-attachment junction, large pitch angles and bifurcation of yaw angles are predicted. Thermal fluctuations at bifurcation may lead to mode-switching, which may affect the network and the physiological performance of the membrane. In contrast, with a wrap-around junction, pitch angles remain small, and the occurrence of bifurcation is greatly reduced. These simulations suggest the importance of three-dimensional molecular junctions and the lipid bilayer/protein network coupling on cell membrane mechanics.


Subject(s)
Erythrocyte Membrane/physiology , Models, Biological , Actins/chemistry , Actins/physiology , Algorithms , Biophysical Phenomena , Biophysics , Cytoskeleton/chemistry , Cytoskeleton/physiology , Elasticity , Erythrocyte Membrane/chemistry , Humans , In Vitro Techniques , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Mathematics , Membrane Proteins/chemistry , Membrane Proteins/physiology , Spectrin/chemistry , Spectrin/physiology , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL