Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Nat Immunol ; 20(1): 109, 2019 01.
Article in English | MEDLINE | ID: mdl-30448856

ABSTRACT

In the version of this article initially published, in the legend to Fig. 1b, the description of the frequency of TH17-IL-10+ clones was incomplete for the first group; this should read as follows: "...13 experiments with clones isolated from CCR6+CCR4+CXCR3- T cells...". Also, the label along the vertical axis of the bottom right plot in Figure 5b was incomplete; the correct label is 'IFN-γ+ cells (%)'. Finally, in the first sentence of the final paragraph of the final Results subsection, the description of the regions analyzed was incorrect; that sentence should begin: "DNA motif-enrichment analysis of the subset-specific H3K27ac-positive regions...". The errors have been corrected in the HTML and PDF versions of the article.

2.
Nat Immunol ; 19(10): 1126-1136, 2018 10.
Article in English | MEDLINE | ID: mdl-30201991

ABSTRACT

Different types of effector and memory T lymphocytes are induced and maintained in protective or pathological immune responses. Here we characterized two human CD4+ TH17 helper cell subsets that, in the recently activated state, could be distinguished on the basis of their expression of the anti-inflammatory cytokine IL-10. IL-10+ TH17 cells upregulated a variety of genes encoding immunoregulatory molecules, as well as genes whose expression is characteristic of tissue-resident T cells. In contrast, IL-10- TH17 cells maintained a pro-inflammatory gene-expression profile and upregulated the expression of homing receptors that guide recirculation from tissues to blood. Expression of the transcription factor c-MAF was selectively upregulated in IL-10+ TH17 cells, and it was bound to a large set of enhancer-like regions and modulated the immunoregulatory and tissue-residency program. Our results identify c-MAF as a relevant factor that drives two highly divergent post-activation fates of human TH17 cells and provide a framework with which to investigate the role of these cells in physiology and immunopathology.


Subject(s)
Interleukin-10/immunology , Proto-Oncogene Proteins c-maf/immunology , T-Lymphocyte Subsets/immunology , Th17 Cells/immunology , Chemotaxis, Leukocyte/immunology , Gene Expression Regulation/immunology , Humans , Inflammation/immunology , Interleukin-10/biosynthesis , Proto-Oncogene Proteins c-maf/metabolism , T-Lymphocyte Subsets/metabolism , Th17 Cells/metabolism
3.
J Clin Immunol ; 43(2): 495-511, 2023 02.
Article in English | MEDLINE | ID: mdl-36370291

ABSTRACT

Balancing natural selection is a process by which genetic variants arise in populations that are beneficial to heterozygous carriers, but pathogenic when homozygous. We systematically investigated the prevalence, structural, and functional consequences of pathogenic IL10RA variants that are associated with monogenic inflammatory bowel disease. We identify 36 non-synonymous and non-sense variants in the IL10RA gene. Since the majority of these IL10RA variants have not been functionally characterized, we performed a systematic screening of their impact on STAT3 phosphorylation upon IL-10 stimulation. Based on the geographic accumulation of confirmed pathogenic IL10RA variants in East Asia and in Northeast China, the distribution of infectious disorders worldwide, and the functional evidence of IL-10 signaling in the pathogenesis, we identify Schistosoma japonicum infection as plausible selection pressure driving variation in IL10RA. Consistent with this is a partially augmented IL-10 response in peripheral blood mononuclear cells from heterozygous variant carriers. A parasite-driven heterozygote advantage through reduced IL-10 signaling has implications for health care utilization in regions with high allele frequencies and potentially indicates pathogen eradication strategies that target IL-10 signaling.


Subject(s)
Interleukin-10 , Leukocytes, Mononuclear , Humans , Receptors, Interleukin-10/genetics , Interleukin-10/genetics , Interleukin-10 Receptor alpha Subunit/genetics , Selection, Genetic
4.
Gastroenterology ; 162(3): 859-876, 2022 03.
Article in English | MEDLINE | ID: mdl-34780721

ABSTRACT

BACKGROUND & AIMS: Monogenic forms of inflammatory bowel disease (IBD) illustrate the essential roles of individual genes in pathways and networks safeguarding immune tolerance and gut homeostasis. METHODS: To build a taxonomy model, we assessed 165 disorders. Genes were prioritized based on penetrance of IBD and disease phenotypes were integrated with multi-omics datasets. Monogenic IBD genes were classified by (1) overlapping syndromic features, (2) response to hematopoietic stem cell transplantation, (3) bulk RNA-sequencing of 32 tissues, (4) single-cell RNA-sequencing of >50 cell subsets from the intestine of healthy individuals and patients with IBD (pediatric and adult), and (5) proteomes of 43 immune subsets. The model was validated by addition of newly identified monogenic IBD defects. As a proof-of-concept, we explore the intersection between immunometabolism and antimicrobial activity for a group of disorders (G6PC3/SLC37A4). RESULTS: Our quantitative integrated taxonomy defines the cellular landscape of monogenic IBD gene expression across 102 genes with high and moderate penetrance (81 in the model set and 21 genes in the validation set). We illustrate distinct cellular networks, highlight expression profiles across understudied cell types (e.g., CD8+ T cells, neutrophils, epithelial subsets, and endothelial cells) and define genotype-phenotype associations (perianal disease and defective antimicrobial activity). We illustrate processes and pathways shared across cellular compartments and phenotypic groups and highlight cellular immunometabolism with mammalian target of rapamycin activation as one of the converging pathways. There is an overlap of genes and enriched cell-specific expression between monogenic and polygenic IBD. CONCLUSION: Our taxonomy integrates genetic, clinical and multi-omic data; providing a basis for genomic diagnostics and testable hypotheses for disease functions and treatment responses.


Subject(s)
Inflammatory Bowel Diseases/classification , Inflammatory Bowel Diseases/genetics , Age of Onset , Antiporters/genetics , Cells, Cultured , Classification , Gene Expression Profiling , Genetic Association Studies , Genotype , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphate/metabolism , Humans , Inflammatory Bowel Diseases/metabolism , Macrophages , Metabolomics , Monosaccharide Transport Proteins/genetics , Penetrance , Phenotype , Signal Transduction/genetics
5.
PLoS Comput Biol ; 18(6): e1010112, 2022 06.
Article in English | MEDLINE | ID: mdl-35731827

ABSTRACT

Cell-cell communication is mediated by many soluble mediators, including over 40 cytokines. Cytokines, e.g. TNF, IL1ß, IL5, IL6, IL12 and IL23, represent important therapeutic targets in immune-mediated inflammatory diseases (IMIDs), such as inflammatory bowel disease (IBD), psoriasis, asthma, rheumatoid and juvenile arthritis. The identification of cytokines that are causative drivers of, and not just associated with, inflammation is fundamental for selecting therapeutic targets that should be studied in clinical trials. As in vitro models of cytokine interactions provide a simplified framework to study complex in vivo interactions, and can easily be perturbed experimentally, they are key for identifying such targets. We present a method to extract a minimal, weighted cytokine interaction network, given in vitro data on the effects of the blockage of single cytokine receptors on the secretion rate of other cytokines. Existing biological network inference methods typically consider the correlation structure of the underlying dataset, but this can make them poorly suited for highly connected, non-linear cytokine interaction data. Our method uses ordinary differential equation systems to represent cytokine interactions, and efficiently computes the configuration with the lowest Akaike information criterion value for all possible network configurations. It enables us to study indirect cytokine interactions and quantify inhibition effects. The extracted network can also be used to predict the combined effects of inhibiting various cytokines simultaneously. The model equations can easily be adjusted to incorporate more complicated dynamics and accommodate temporal data. We validate our method using synthetic datasets and apply our method to an experimental dataset on the regulation of IL23, a cytokine with therapeutic relevance in psoriasis and IBD. We validate several model predictions against experimental data that were not used for model fitting. In summary, we present a novel method specifically designed to efficiently infer cytokine interaction networks from cytokine perturbation data in the context of IMIDs.


Subject(s)
Inflammatory Bowel Diseases , Psoriasis , Cytokines , Humans , Inflammation , Psoriasis/drug therapy , Receptors, Cytokine
6.
Gut ; 70(6): 1023-1036, 2021 06.
Article in English | MEDLINE | ID: mdl-33037057

ABSTRACT

OBJECTIVE: Dysregulated immune responses are the cause of IBDs. Studies in mice and humans suggest a central role of interleukin (IL)-23-producing mononuclear phagocytes in disease pathogenesis. Mechanistic insights into the regulation of IL-23 are prerequisite for selective IL-23 targeting therapies as part of personalised medicine. DESIGN: We performed transcriptomic analysis to investigate IL-23 expression in human mononuclear phagocytes and peripheral blood mononuclear cells. We investigated the regulation of IL-23 expression and used single-cell RNA sequencing to derive a transcriptomic signature of hyperinflammatory monocytes. Using gene network correlation analysis, we deconvolved this signature into components associated with homeostasis and inflammation in patient biopsy samples. RESULTS: We characterised monocyte subsets of healthy individuals and patients with IBD that express IL-23. We identified autosensing and paracrine sensing of IL-1α/IL-1ß and IL-10 as key cytokines that control IL-23-producing monocytes. Whereas Mendelian genetic defects in IL-10 receptor signalling induced IL-23 secretion after lipopolysaccharide stimulation, whole bacteria exposure induced IL-23 production in controls via acquired IL-10 signalling resistance. We found a transcriptional signature of IL-23-producing inflammatory monocytes that predicted both disease and resistance to antitumour necrosis factor (TNF) therapy and differentiated that from an IL-23-associated lymphocyte differentiation signature that was present in homeostasis and in disease. CONCLUSION: Our work identifies IL-10 and IL-1 as critical regulators of monocyte IL-23 production. We differentiate homeostatic IL-23 production from hyperinflammation-associated IL-23 production in patients with severe ulcerating active Crohn's disease and anti-TNF treatment non-responsiveness. Altogether, we identify subgroups of patients with IBD that might benefit from IL-23p19 and/or IL-1α/IL-1ß-targeting therapies upstream of IL-23.


Subject(s)
Drug Resistance/genetics , Inflammatory Bowel Diseases/genetics , Interleukin-10/genetics , Interleukin-23 Subunit p19/biosynthesis , Interleukin-23 Subunit p19/genetics , Monocytes/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Autocrine Communication , Cells, Cultured , Female , Gene Expression , Gene Expression Regulation , Gene Regulatory Networks , Homeostasis/genetics , Humans , Inflammatory Bowel Diseases/drug therapy , Interleukin-10/metabolism , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides , Male , Middle Aged , Monocytes/immunology , Paracrine Communication , Receptors, Interleukin-10/antagonists & inhibitors , Receptors, Interleukin-10/metabolism , Signal Transduction/genetics , Transcriptome , Tumor Necrosis Factor-alpha/adverse effects , Young Adult
7.
Haematologica ; 104(3): 609-621, 2019 03.
Article in English | MEDLINE | ID: mdl-30309848

ABSTRACT

Hyper-IgE syndromes comprise a group of inborn errors of immunity. STAT3-deficient hyper-IgE syndrome is characterized by elevated serum IgE levels, recurrent infections and eczema, and characteristic skeletal anomalies. A loss-of-function biallelic mutation in IL6ST encoding the GP130 receptor subunit (p.N404Y) has very recently been identified in a singleton patient (herein referred to as PN404Y) as a novel etiology of hyper-IgE syndrome. Here, we studied a patient with hyper-IgE syndrome caused by a novel homozygous mutation in IL6ST (p.P498L; patient herein referred to as PP498L) leading to abrogated GP130 signaling after stimulation with IL-6 and IL-27 in peripheral blood mononuclear cells as well as IL-6 and IL-11 in fibroblasts. Extending the initial identification of selective GP130 deficiency, we aimed to dissect the effects of aberrant cytokine signaling on T-helper cell differentiation in both patients. Our results reveal the importance of IL-6 signaling for the development of CCR6-expressing memory CD4+ T cells (including T-helper 17-enriched subsets) and non-conventional CD8+T cells which were reduced in both patients. Downstream functional analysis of the GP130 mutants (p.N404Y and p.P498L) have shown differences in response to IL-27, with the p.P498L mutation having a more severe effect that is reflected by reduced T-helper 1 cells in this patient (PP498L) only. Collectively, our data suggest that characteristic features of GP130-deficient hyper-IgE syndrome phenotype are IL-6 and IL-11 dominated, and indicate selective roles of aberrant IL-6 and IL-27 signaling on the differentiation of T-cell subsets.


Subject(s)
Cytokine Receptor gp130/genetics , Job Syndrome/diagnosis , Job Syndrome/etiology , Loss of Function Mutation , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Biomarkers , Cell Differentiation/genetics , Child , Child, Preschool , Cytokine Receptor gp130/chemistry , DNA Mutational Analysis , Disease Susceptibility , Genetic Association Studies , Humans , Immunophenotyping , Job Syndrome/metabolism , Lymphocyte Activation , Male , Models, Molecular , Pedigree , Phenotype , Protein Conformation , Radiography
8.
Nature ; 484(7395): 514-8, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22466287

ABSTRACT

IL-17-producing CD4+ T helper cells (TH17) have been extensively investigated in mouse models of autoimmunity. However, the requirements for differentiation and the properties of pathogen-induced human TH17 cells remain poorly defined. Using an approach that combines the in vitro priming of naive T cells with the ex vivo analysis of memory T cells, we describe here two types of human TH17 cells with distinct effector function and differentiation requirements. Candida albicans-specific TH17 cells produced IL-17 and IFN-γ, but no IL-10, whereas Staphylococcus aureus-specific TH17 cells produced IL-17 and could produce IL-10 upon restimulation. IL-6, IL-23 and IL-1ß contributed to TH17 differentiation induced by both pathogens, but IL-1ß was essential in C. albicans-induced TH17 differentiation to counteract the inhibitory activity of IL-12 and to prime IL-17/IFN-γ double-producing cells. In addition, IL-1ß inhibited IL-10 production in differentiating and in memory TH17 cells, whereas blockade of IL-1ß in vivo led to increased IL-10 production by memory TH17 cells. We also show that, after restimulation, TH17 cells transiently downregulated IL-17 production through a mechanism that involved IL-2-induced activation of STAT5 and decreased expression of ROR-γt. Taken together these findings demonstrate that by eliciting different cytokines C. albicans and S. aureus prime TH17 cells that produce either IFN-γ or IL-10, and identify IL-1ß and IL-2 as pro- and anti-inflammatory regulators of TH17 cells both at priming and in the effector phase.


Subject(s)
Candida albicans/immunology , Interferon-gamma/biosynthesis , Interleukin-10/biosynthesis , Interleukin-1beta/immunology , Staphylococcus aureus/immunology , Th17 Cells/immunology , Th17 Cells/metabolism , Antigen Presentation/immunology , Cell Differentiation , Down-Regulation , Humans , Immunologic Memory/immunology , Interleukin-17/biosynthesis , Interleukin-2/antagonists & inhibitors , Interleukin-2/immunology , Lymphocyte Activation , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , STAT5 Transcription Factor/metabolism , Th17 Cells/cytology , Tumor Necrosis Factor-alpha/metabolism
11.
Nat Commun ; 15(1): 4529, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806456

ABSTRACT

Despite major advances in linking single genetic variants to single causal genes, the significance of genetic variation on transcript-level regulation of expression, transcript-specific functions, and relevance to human disease has been poorly investigated. Strawberry notch homolog 2 (SBNO2) is a candidate gene in a susceptibility locus with different variants associated with Crohn's disease and bone mineral density. The SBNO2 locus is also differentially methylated in Crohn's disease but the functional mechanisms are unknown. Here we show that the isoforms of SBNO2 are differentially regulated by lipopolysaccharide and IL-10. We identify Crohn's disease associated isoform quantitative trait loci that negatively regulate the expression of the noncanonical isoform 2 corresponding with the methylation signals at the isoform 2 promoter in IBD and CD. The two isoforms of SBNO2 drive differential gene networks with isoform 2 dominantly impacting antimicrobial activity in macrophages. Our data highlight the role of isoform quantitative trait loci to understand disease susceptibility and resolve underlying mechanisms of disease.


Subject(s)
Crohn Disease , Genetic Predisposition to Disease , Lipopolysaccharides , Protein Isoforms , Quantitative Trait Loci , Crohn Disease/genetics , Humans , Protein Isoforms/genetics , Protein Isoforms/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Promoter Regions, Genetic/genetics , DNA Methylation , Macrophages/metabolism , Gene Expression Regulation
12.
Cell Rep Med ; 4(3): 100983, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36948149

ABSTRACT

Lilja et al.1 explore single-cell transcriptomes across multiple organs of mice with collagen-induced arthritis. They apply network analysis to prioritize functional pathways that support or suppress inflammation and integrate findings with tissue transcriptomics in human immune-mediated inflammatory diseases.


Subject(s)
Arthritis, Experimental , Inflammation , Animals , Humans , Inflammation/metabolism , Arthritis, Experimental/metabolism
13.
Lancet Microbe ; 3(12): e969-e983, 2022 12.
Article in English | MEDLINE | ID: mdl-36182668

ABSTRACT

The gut mycobiome (fungi) is a small but crucial component of the gut microbiome in humans. Intestinal fungi regulate host homoeostasis, pathophysiological and physiological processes, and the assembly of the co-residing gut bacterial microbiome. Over the past decade, accumulating studies have characterised the gut mycobiome in health and several pathological conditions. We review the compositional and functional diversity of the gut mycobiome in healthy populations from birth to adulthood. We describe factors influencing the gut mycobiome and the roles of intestinal fungi-especially Candida and Saccharomyces spp-in diseases and therapies with a particular focus on their synergism with the gut bacterial microbiome and host immunity. Finally, we discuss the underappreciated effects of gut fungi in clinical implications, and highlight future microbiome-based therapies that harness the tripartite relationship among the gut mycobiome, bacterial microbiome, and host immunity, aiming to restore a core gut mycobiome and microbiome and to improve clinical efficacy.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Mycobiome , Humans , Adult , Bacteria , Fungi/physiology
14.
Mucosal Immunol ; 15(6): 1431-1446, 2022 06.
Article in English | MEDLINE | ID: mdl-36302964

ABSTRACT

Hermansky-Pudlak syndrome (HPS) types 1 and 4 are caused by defective vesicle trafficking. The mechanism for Crohn's disease-like inflammation, lung fibrosis, and macrophage lipid accumulation in these patients remains enigmatic. The aim of this study is to understand the cellular basis of inflammation in HPS-1. We performed mass cytometry, proteomic and transcriptomic analyses to investigate peripheral blood cells and serum of HPS-1 patients. Using spatial transcriptomics, granuloma-associated signatures in the tissue of an HPS-1 patient with granulomatous colitis were dissected. In vitro studies were conducted to investigate anti-microbial responses of HPS-1 patient macrophages and cell lines. Monocytes of HPS-1 patients exhibit an inflammatory phenotype associated with dysregulated TNF, IL-1α, OSM in serum, and monocyte-derived macrophages. Inflammatory macrophages accumulate in the intestine and granuloma-associated macrophages in HPS-1 show transcriptional signatures suggestive of a lipid storage and metabolic defect. We show that HPS1 deficiency leads to an altered metabolic program and Rab32-dependent amplified mTOR signaling, facilitated by the accumulation of mTOR on lysosomes. This pathogenic mechanism translates into aberrant bacterial clearance, which can be rescued with mTORC1 inhibition. Rab32-mediated mTOR signaling acts as an immuno-metabolic checkpoint, adding to the evidence that defective bioenergetics can drive hampered anti-microbial activity and contribute to inflammation.


Subject(s)
Hermanski-Pudlak Syndrome , Humans , Hermanski-Pudlak Syndrome/genetics , Hermanski-Pudlak Syndrome/complications , Hermanski-Pudlak Syndrome/pathology , Proteomics , Inflammation , TOR Serine-Threonine Kinases , Lipids
15.
Nat Genet ; 53(4): 500-510, 2021 04.
Article in English | MEDLINE | ID: mdl-33782605

ABSTRACT

Spleen tyrosine kinase (SYK) is a critical immune signaling molecule and therapeutic target. We identified damaging monoallelic SYK variants in six patients with immune deficiency, multi-organ inflammatory disease such as colitis, arthritis and dermatitis, and diffuse large B cell lymphomas. The SYK variants increased phosphorylation and enhanced downstream signaling, indicating gain of function. A knock-in (SYK-Ser544Tyr) mouse model of a patient variant (p.Ser550Tyr) recapitulated aspects of the human disease that could be partially treated with a SYK inhibitor or transplantation of bone marrow from wild-type mice. Our studies demonstrate that SYK gain-of-function variants result in a potentially treatable form of inflammatory disease.


Subject(s)
Arthritis/genetics , Colitis/genetics , Dermatitis/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Syk Kinase/genetics , Adult , Animals , Arthritis/immunology , Arthritis/pathology , Arthritis/therapy , Base Sequence , Bone Marrow Transplantation , Colitis/immunology , Colitis/pathology , Colitis/therapy , Dermatitis/immunology , Dermatitis/pathology , Dermatitis/therapy , Family , Female , Gene Expression , Gene Knock-In Techniques , Humans , Infant , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Large B-Cell, Diffuse/therapy , Male , Mice , Mice, Knockout , Middle Aged , Mutation , Pedigree , Protein Kinase Inhibitors/pharmacology , Syk Kinase/antagonists & inhibitors , Syk Kinase/deficiency
16.
Genome Med ; 12(1): 55, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32580776

ABSTRACT

BACKGROUND: Traditionally, the transcriptomic and proteomic characterisation of CD4+ T cells at the single-cell level has been performed by two largely exclusive types of technologies: single-cell RNA sequencing (scRNA-seq) and antibody-based cytometry. Here, we present a multi-omics approach allowing the simultaneous targeted quantification of mRNA and protein expression in single cells and investigate its performance to dissect the heterogeneity of human immune cell populations. METHODS: We have quantified the single-cell expression of 397 genes at the mRNA level and up to 68 proteins using oligo-conjugated antibodies (AbSeq) in 43,656 primary CD4+ T cells isolated from the blood and 31,907 CD45+ cells isolated from the blood and matched duodenal biopsies. We explored the sensitivity of this targeted scRNA-seq approach to dissect the heterogeneity of human immune cell populations and identify trajectories of functional T cell differentiation. RESULTS: We provide a high-resolution map of human primary CD4+ T cells and identify precise trajectories of Th1, Th17 and regulatory T cell (Treg) differentiation in the blood and tissue. The sensitivity provided by this multi-omics approach identified the expression of the B7 molecules CD80 and CD86 on the surface of CD4+ Tregs, and we further demonstrated that B7 expression has the potential to identify recently activated T cells in circulation. Moreover, we identified a rare subset of CCR9+ T cells in the blood with tissue-homing properties and expression of several immune checkpoint molecules, suggestive of a regulatory function. CONCLUSIONS: The transcriptomic and proteomic hybrid technology described in this study provides a cost-effective solution to dissect the heterogeneity of immune cell populations at extremely high resolution. Unexpectedly, CD80 and CD86, normally expressed on antigen-presenting cells, were detected on a subset of activated Tregs, indicating a role for these co-stimulatory molecules in regulating the dynamics of CD4+ T cell responses.


Subject(s)
B7-1 Antigen/immunology , B7-2 Antigen/immunology , T-Lymphocytes, Regulatory/immunology , Adolescent , Adult , Female , Forkhead Transcription Factors/genetics , Humans , Male , Proteome , RNA , RNA-Seq , Single-Cell Analysis , Transcriptome
17.
Bone Res ; 8: 24, 2020.
Article in English | MEDLINE | ID: mdl-32566365

ABSTRACT

The GP130 cytokine receptor subunit encoded by IL6ST is the shared receptor for ten cytokines of the IL-6 family. We describe a homozygous non-synonymous variant in IL6ST (p.R281Q) in a patient with craniosynostosis and retained deciduous teeth. We characterize the impact of the variant on cytokine signaling in vitro using transfected cell lines as well as primary patient-derived cells and support these findings using a mouse model with the corresponding genome-edited variant Il6st p.R279Q. We show that human GP130 p.R281Q is associated with selective loss of IL-11 signaling without affecting IL-6, IL-27, OSM, LIF, CT1, CLC, and CNTF signaling. In mice Il6st p.R279Q lowers litter size and causes facial synostosis and teeth abnormalities. The effect on IL-11 signaling caused by the GP130 variant shows incomplete penetrance but phenocopies aspects of IL11RA deficiency in humans and mice. Our data show that a genetic variant in a pleiotropic cytokine receptor can have remarkably selective defects.

18.
J Exp Med ; 217(3)2020 03 02.
Article in English | MEDLINE | ID: mdl-31914175

ABSTRACT

The gene IL6ST encodes GP130, the common signal transducer of the IL-6 cytokine family consisting of 10 cytokines. Previous studies have identified cytokine-selective IL6ST defects that preserve LIF signaling. We describe three unrelated families with at least five affected individuals who presented with lethal Stüve-Wiedemann-like syndrome characterized by skeletal dysplasia and neonatal lung dysfunction with additional features such as congenital thrombocytopenia, eczematoid dermatitis, renal abnormalities, and defective acute-phase response. We identified essential loss-of-function variants in IL6ST (a homozygous nonsense variant and a homozygous intronic splice variant with exon skipping). Functional tests showed absent cellular responses to GP130-dependent cytokines including IL-6, IL-11, IL-27, oncostatin M (OSM), and leukemia inhibitory factor (LIF). Genetic reconstitution of GP130 by lentiviral transduction in patient-derived cells reversed the signaling defect. This study identifies a new genetic syndrome caused by the complete lack of signaling of a whole family of GP130-dependent cytokines in humans and highlights the importance of the LIF signaling pathway in pre- and perinatal development.


Subject(s)
Cytokine Receptor gp130/metabolism , Exostoses, Multiple Hereditary/metabolism , Osteochondrodysplasias/metabolism , Signal Transduction/physiology , Antigens, CD/metabolism , Cells, Cultured , HEK293 Cells , Humans , Interleukin-11/metabolism , Interleukin-6/metabolism , Leukemia Inhibitory Factor/metabolism , Oncostatin M/metabolism , Receptors, Cytokine/metabolism
19.
J Exp Med ; 217(6)2020 06 01.
Article in English | MEDLINE | ID: mdl-32207811

ABSTRACT

Autosomal dominant hyper-IgE syndrome (AD-HIES) is typically caused by dominant-negative (DN) STAT3 mutations. Patients suffer from cold staphylococcal lesions and mucocutaneous candidiasis, severe allergy, and skeletal abnormalities. We report 12 patients from 8 unrelated kindreds with AD-HIES due to DN IL6ST mutations. We identified seven different truncating mutations, one of which was recurrent. The mutant alleles encode GP130 receptors bearing the transmembrane domain but lacking both the recycling motif and all four STAT3-recruiting tyrosine residues. Upon overexpression, the mutant proteins accumulate at the cell surface and are loss of function and DN for cellular responses to IL-6, IL-11, LIF, and OSM. Moreover, the patients' heterozygous leukocytes and fibroblasts respond poorly to IL-6 and IL-11. Consistently, patients with STAT3 and IL6ST mutations display infectious and allergic manifestations of IL-6R deficiency, and some of the skeletal abnormalities of IL-11R deficiency. DN STAT3 and IL6ST mutations thus appear to underlie clinical phenocopies through impairment of the IL-6 and IL-11 response pathways.


Subject(s)
Cytokine Receptor gp130/genetics , Genes, Dominant , Job Syndrome/genetics , Mutation/genetics , Adolescent , Alleles , C-Reactive Protein/metabolism , Cell Membrane/metabolism , Cells, Cultured , Child , Cytokine Receptor gp130/deficiency , Cytokines/biosynthesis , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Genetics, Population , HEK293 Cells , Humans , Job Syndrome/blood , Job Syndrome/diagnostic imaging , Job Syndrome/immunology , Kinetics , Loss of Function Mutation/genetics , Male , Middle Aged , Models, Biological , Pedigree , Phenotype , Th2 Cells/metabolism , Up-Regulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL