Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
BMC Genomics ; 25(1): 844, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251934

ABSTRACT

BACKGROUND: Oculocutaneous albinism type1 (OCA1) is caused by the TYR gene's homozygous and compound heterozygous variants. TKFC gene variants cause triokinase & FMN cyclase deficiency syndrome with variable multisystemic disorders. OBJECTIVES: To determine the potential disease-causing variants in two deceased patients presenting atypical OCA1 features by demonstrating three generations for a single family. The two deceased neonates had severe skeletal abnormalities and fatal hypertrophic cardiomyopathy. We also explored the potential mechanisms for the causative relationship between TKFC and multisystem disorders. PATIENTS AND METHODS: Due to the new emerging symptoms that weren't reported before with the TYR gene, the following methods were performed: Sanger sequencing for the TYR gene, followed by whole exome sequencing, co-segregation, and computational analyses. RESULTS: Extensive parental consanguinity was found, and consequently an autosomal recessive mode of inheritance was prioritized. Upon performing sequencing and segregation data, the following has been confirmed: positive co-segregation of nonsense homozygous NM_000372.5:c.346C > T p.(Arg116*) variant in TYR gene and multisystem disease-missense homozygous NM_015533.4:c.598G > A p.(Val200Ile) variant in TKFC gene in the two affected index patients who deceased due to hypertrophic cardiomyopathy. Using computational analysis, we found that c.598G > A p.(Val200Ile) pathogenicity has led to the failure of L2-K1 active site closure due to the potential differential fluctuation between valine and isoleucine residues. Subsequently, disruption of endogenous DHA phosphorylation was found. Two potential mechanisms exploring the causative relationship between TKFC gene and multisystem disorders have been suggested. CONCLUSIONS: This study presented a first family with the co-existence of biallelic variants in TYR and TKFC genes associating severe skeletal abnormalities and lethal hypertrophic cardiomyopathy. Neither of these genes would have been pursued in the standard genetic counseling. Such discovery is paving the way for more efficient genetic counseling. Comparing TKFC results with literature data showed that our relevant expanded TKFC variant is the 3rd worldwide.


Subject(s)
Pedigree , Humans , Male , Female , Egypt , Alleles , Infant, Newborn , Homozygote , Cardiomyopathy, Hypertrophic/genetics , Mutation , Consanguinity
2.
Mol Biol Rep ; 51(1): 766, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877370

ABSTRACT

BACKGROUND: Myotonia Congenita (MC) is a rare disease classified into two major forms; Thomsen and Becker disease caused by mutations in the CLCN1 gene, which affects muscle excitability and encodes voltage-gated chloride channels (CLC-1). While, there are no data regarding the clinical and molecular characterization of myotonia in Egyptian patients. METHODS: Herein, we report seven Egyptian MC patients from six unrelated families. Following the clinical diagnosis, whole-exome sequencing (WES) was performed for genetic diagnosis. Various in silico prediction tools were utilized to interpret variant pathogenicity. The candidate variants were then validated using Sanger sequencing technique. RESULTS: In total, seven cases were recruited. The ages at the examination were ranged from eight months to nineteen years. Clinical manifestations included warm-up phenomenon, hand grip, and percussion myotonia. Electromyography was performed in all patients and revealed myotonic discharges. Molecular genetic analysis revealed five different variants. Of them, we identified two novel variants in the CLCN1 gene ( c.1583G > C; p.Gly528Ala and c.2203_2216del;p.Thr735ValfsTer57) and three known variants in the CLCN1 and SCN4A gene. According to in silico tools, the identified novel variants were predicted to have deleterious effects. CONCLUSIONS: As the first study to apply WES among Egyptian MC patients, our findings reported two novel heterozygous variants that expand the CLCN1 mutational spectrum for MC diagnosis. These results further confirm that genetic testing is essential for early diagnosis of MC, which affects follow-up treatment and prognostic assessment in clinical practice.


Subject(s)
Chloride Channels , Exome Sequencing , Mutation , Myotonia Congenita , Humans , Myotonia Congenita/genetics , Myotonia Congenita/diagnosis , Exome Sequencing/methods , Chloride Channels/genetics , Female , Male , Egypt , Child , Adolescent , Mutation/genetics , Child, Preschool , Young Adult , Infant , NAV1.4 Voltage-Gated Sodium Channel/genetics , Adult , Pedigree , Electromyography
3.
Am J Med Genet A ; 182(2): 303-313, 2020 02.
Article in English | MEDLINE | ID: mdl-31854143

ABSTRACT

Turner syndrome (TS) is a common multiple congenital anomaly syndrome resulting from complete or partial absence of the second X chromosome. In this study, we explore the phenotype of TS in diverse populations using clinical examination and facial analysis technology. Clinical data from 78 individuals and images from 108 individuals with TS from 19 different countries were analyzed. Individuals were grouped into categories of African descent (African), Asian, Latin American, Caucasian (European descent), and Middle Eastern. The most common phenotype features across all population groups were short stature (86%), cubitus valgus (76%), and low posterior hairline 70%. Two facial analysis technology experiments were conducted: TS versus general population and TS versus Noonan syndrome. Across all ethnicities, facial analysis was accurate in diagnosing TS from frontal facial images as measured by the area under the curve (AUC). An AUC of 0.903 (p < .001) was found for TS versus general population controls and 0.925 (p < .001) for TS versus individuals with Noonan syndrome. In summary, we present consistent clinical findings from global populations with TS and additionally demonstrate that facial analysis technology can accurately distinguish TS from the general population and Noonan syndrome.


Subject(s)
Abnormalities, Multiple/epidemiology , Face/abnormalities , Noonan Syndrome/epidemiology , Turner Syndrome/epidemiology , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/physiopathology , Adolescent , Adult , Asian People/genetics , Child , Child, Preschool , Chromosomes, Human, X/genetics , Face/pathology , Facial Recognition , Female , Hispanic or Latino/genetics , Humans , Infant , Infant, Newborn , Male , Middle Aged , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Noonan Syndrome/physiopathology , Phenotype , Population Surveillance , Turner Syndrome/diagnosis , Turner Syndrome/genetics , Turner Syndrome/physiopathology , White People/genetics , Young Adult
4.
Am J Med Genet B Neuropsychiatr Genet ; 180(5): 305-309, 2019 07.
Article in English | MEDLINE | ID: mdl-31033224

ABSTRACT

BACKGROUND: Autism spectrum disorders (ASD) is a heterogeneous neurodevelopmental disease, various articles reported that dysfunctional folate-methionine pathway enzymes might assume a paramount part in the pathophysiology of autism. Methylene tetrahydrofolate reductase (MTHFR) is a basic catalyst for this pathway, also MTHFR gene C677T variant accounted as a risk factor of autism. OBJECTIVE: The present study aimed to investigate the association of MTHFR gene rs1801133(C677T) variant among Egyptian autistic children. METHODS: The study included 78 autistic children, and 80 matched healthy control children. Full clinical and radiological examinations were conducted. MTHFR genetic variant, rs1801133(C677T) was studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods followed by direct sequencing technique. RESULTS: MTHFR (C677T) allele frequency was found to be higher significantly in ASD cases compared with nonautistic children. Also, we had a higher distribution of combined CT + TT genotypes among autistic patients with consanguinity and family history of psychological disease. In Gastrointestinal tract (GIT) and sleep disorders showed a higher distribution of hetero CT genotype as well as combined CT + TT genotypes. CONCLUSION: This study demonstrated a role of MTHFR gene (C667T) variant with the increased risk for ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Alleles , Case-Control Studies , Child , Child Development Disorders, Pervasive/genetics , Child, Preschool , Egypt/epidemiology , Female , Gene Frequency/genetics , Genetic Predisposition to Disease , Genotype , Humans , Male , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Polymerase Chain Reaction/methods , Polymorphism, Restriction Fragment Length/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors
5.
Mol Neurobiol ; 61(8): 4949-4961, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38153683

ABSTRACT

Several neurological disorders, neurodevelopmental disorders, and neurodegenerative disorders have a genetic element with various clinical presentations ranging from mild to severe presentation. Neurological disorders are rare multifactorial disorders characterized by dysfunction and degeneration of synapses, neurons, and glial cells which are essential for movement, coordination, muscle strength, sensation, and cognition. The cerebellum might be involved at any time, either during development and maturation or later in life. Herein, we describe a spectrum of NDDs and NDs in seven patients from six Egyptian families. The core clinical and radiological features of our patients included dysmorphic features, neurodevelopmental delay or regression, gait abnormalities, skeletal deformities, visual impairment, seizures, and cerebellar atrophy. Previously unreported clinical phenotypic findings were recorded. Whole-exome sequencing (WES) was performed followed by an in silico analysis of the detected genetic variants' effect on the protein structure. Three novel variants were identified in three genes MFSD8, AGTPBP1, and APTX, and other previously reported three variants have been detected in "TPP1, AGTPBP1, and PCDHGC4" genes. In this cohort, we described the detailed unique phenotypic characteristics given the identified genetic profile in patients with neurological "neurodevelopmental disorders and neurodegenerative disorders" disorders associated with cerebellar atrophy, hence expanding the mutational spectrum of such disorders.


Subject(s)
Atrophy , Exome Sequencing , Nervous System Diseases , Humans , Exome Sequencing/methods , Male , Female , Nervous System Diseases/genetics , Nervous System Diseases/diagnosis , Child , Atrophy/genetics , Child, Preschool , Cerebellum/pathology , Cerebellum/diagnostic imaging , Adolescent , Mutation/genetics , Phenotype , Infant
6.
J Mol Neurosci ; 73(7-8): 598-607, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37470904

ABSTRACT

Lysosomal acid lipase (LAL) is a necessary enzyme for the hydrolysis of both triglycerides (TGs) and cholesteryl esters (CEs) in the lysosome. Deficiency of this enzyme encoded by the lipase A (LIPA) gene leads to LAL deficiency (LAL-D). A severe disease subtype of LAL-D is known as Wolman disease (WD), present with diarrhea, hepatosplenomegaly, and adrenal calcification. Untreated patients do not survive more than a year. The aim of this study was to assess the clinical and molecular characterizations of WD patients in Egypt. A total of seven patients (from five unrelated Egyptian families) were screened by targeted next-generation sequencing (NGS), and the co-segregation of causative variants was analyzed using Sanger sequencing. Furthermore, multiple in silico analyses were performed to assess the pathogenicity of the candidate variants. Overall, we identified three diseases causing variants harbored in the LIPA gene. One of these variants is a novel missense variant (NM_000235.4: c.1122 T > G; p. His374Gln), which was classified as a likely pathogenic variant. All variants were predicted to be disease causing using in silico analyses. Our findings expand the spectrum of variants involved in WD which may help to investigate phenotype-genotype correlation and assist genetic counseling. To the best of our knowledge, this is the first clinico-genetic study carried out on Egyptian patients affected with WD.


Subject(s)
Wolman Disease , Humans , Wolman Disease/drug therapy , Wolman Disease/genetics , Lipase/genetics , Egypt , Mutation , Wolman Disease
7.
Brain Dev ; 45(4): 212-219, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36522215

ABSTRACT

BACKGROUND: Autism spectrum disorders (ASD) are devastating neurodevelopmental disorders that showed global increased prevalence. They are characterized by impairment of social communication and stereotyped patterns. OBJECTIVE: This study aimed at measuring the levels of total sialic acid (SA) and anti-ganglioside M1 (anti- GM1) IgG antibodies as essential biomarkers in a cohort of children with ASD to identify their diagnostic yield as well as their correlation with the severity of autistic behaviors. METHODS: The demographic characteristics, anthropometric measurements, and clinical data were recorded. The levels of total plasma SA and serum anti-GM1 IgG antibodies levels were measured in 100 children with ASD and 100 healthy controls. The severity of ASD-related symptoms was assessed by using the Childhood Autism Rating Scale (CARS). RESULTS: Children with ASD had significantly higher levels of both SA and anti-GM1 antibodies than healthy controls (p < 0.001). SA showed a statistically significant moderate diagnostic performance while anti-GM1 antibody showed a statistically significant high diagnostic in differentiating severe from mild to moderate autism. Moreover, both SA and anti-GM1 antibodies levels were significantly correlated to the severity of ASD symptoms (p < 0.001). CONCLUSION: The significantly increased levels of SA and anti-GM1 antibodies in children with ASD and their correlation with autism-related symptoms suggest their possible etiopathogenic role in autism as one of the pediatric autoimmune neuropsychiatric disorders. However, further large-scale studies are still needed to explore their possible bidirectional relationship as biomarkers for autism.


Subject(s)
Autism Spectrum Disorder , Child , Humans , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/psychology , N-Acetylneuraminic Acid , Gangliosides , Biomarkers , Immunoglobulin G
8.
J Mol Neurosci ; 72(11): 2242-2251, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36251212

ABSTRACT

Alopecia intellectual disability syndromes 4 (APMR4) is a very rare autosomal recessive condition caused by a mutation in the LSS gene present on chromosome 21. This syndrome has a clinical heterogeneity mainly exhibited with variable degrees of intellectual disability (ID) and congenital alopecia, as well. Eight families with 13 cases have been previously reported. Herein, we provide a report on an Egyptian family with two affected siblings and one affected fetus who was diagnosed prenatally. Whole-exome sequencing (WES) revealed a novel pathogenic missense variant (c.1609G > T; p.Val537Leu) in the lanosterol synthase gene (LSS) related to the examined patients. The detected variant was confirmed by Sanger sequencing. Segregation analyses confirmed that the parents were heterozygous. Our patient was presented with typical clinical manifestations of the disease in addition to new phenotypic features which included some dysmorphic facies as frontal bossing and bilateral large ears, as well as bilateral hyperextensibility of the fingers and wrist joints, short stature, umbilical hernia, and teeth mineralization defect. This study is the first study in Egypt and the 9th molecularly proven family to date. The aim is to expand the clinical and mutational spectrum of the syndrome. Moreover, the report gives a hint on the importance of prenatal testing and the proper genetic counseling to help the parents to take their own decision based on their beliefs.


Subject(s)
Alopecia , Intellectual Disability , Humans , Syndrome
9.
Behav Brain Res ; 378: 112272, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31586564

ABSTRACT

Catechol-O-methyltransferase (COMT) enzyme has a major role in the adjustment of catechol-dependent functions, for example, cognition, cardiac function, and pain processing. The pathogenesis of autism may be related to dysfunction in the midbrain dopaminergic system. Therefore, we aimed to clarify how COMT gene variants affect dopamine level, and its potential impact on phenotype traits of autistic patients. 52 autistic patients were subjected to comprehensive clinical investigation, sequencing of exon 4 of the COMT gene by direct Sanger Sequencing, and measuring of dopamine levels. The clinical presentations of autistic subjects were correlated with detected COMT variants and dopamine level. Our molecular results revealed that three COMT variants were found: rs8192488 [C > T], rs4680 (Val158Met) and rs4818 [C > G]. Within autistic subjects, Val158Met rs4680 carriers were significantly distributed (71.2% P = 0.014) accompanied with abnormal dopamine, abnormal Electroencephalogram (EEG) and increasing the severity of autistic behaviour. As regards the haplotypes, CC/VM/CG block was significantly distributed among the autistic subjects (30.8%) presented with low mean dopamine level (15.8 ±â€¯4.7 pg/ml, p = 0.05), while CC/MM/CC were presented with high mean level (77.8 ±â€¯8.6 pg/ml, p = 0.05). Evidence is currently limited and preliminary, further studies are necessary in order to set up a coherent dopaminergic model of Autism Spectrum Disorder (ASD), which would further pave the way for an adequate treatment.


Subject(s)
Autism Spectrum Disorder/blood , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Catechol O-Methyltransferase/genetics , Dopamine/blood , Adolescent , Child , Child, Preschool , Electroencephalography , Female , Humans , Male , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL