Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Rev Med Virol ; 34(2): e2524, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38375992

ABSTRACT

The Human Papillomavirus (HPV) infection is responsible for more than 80% of reported cervical cancer and other virus-associated tumours. Although this global threat can be controlled using effective vaccination strategies, a growing perturbation of HPV infection is an emerging coinfection likely to increase the severity of the infection in humans. Moreover, these coinfections prolong the HPV infections, thereby risking the chances for oncogenic progression. The present review consolidated the clinically significant microbial coinfections/co-presence associated with HPV and their underlying molecular mechanisms. We discussed the gaps and concerns associated with demography, present vaccination strategies, and other prophylactic limitations. We concluded our review by highlighting the potential clinical as well as emerging computational intervention measures to kerb down HPV-associated severities.


Subject(s)
Coinfection , Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Female , Humans , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Papillomavirus Infections/epidemiology , Papillomavirus Infections/prevention & control , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/pathology , Vaccination , Papillomaviridae
2.
J Mol Recognit ; 37(1): e3064, 2024 01.
Article in English | MEDLINE | ID: mdl-37804135

ABSTRACT

Gel-forming mucin MUC5B is significantly deregulated in lung adenocarcinoma (LUAD), however, its role in tumor progression is not yet clearly understood. Here, we used an integrated computational-pipeline-initiated with gene expression analysis followed by network, functional-enrichment, O-linked glycosylation analyses, mutational profiling, and immune cell infiltration estimation to functionally characterize MUC5B gene in LUAD. Thereafter, clinical biomarker validation was supported by the overall survival (OA) and comparative expression profiling across clinical stages using computational algorithms. The gene expression profile of LUAD identified MUC5B to be significantly up-regulated (logFC: 2.36; p-value: 0.01). Network analysis on LUAD interactome screened MUC5B-related genes, having key enrichment in immune suppression and O-linked glycosylation with serine-threonine-rich tandem repeats being highly glycosylated. Furthermore, positive correlation of mutant MUC5B with immune cells in tumor microenvironment (TME) such as cancer-associated fibroblasts and myeloid-derived suppressor cells indicates TME-mediated tumor progression. The positive correlation with immune inhibitors suggested the enhanced tumor proliferation mediated by MUC5B. Structural stability due to genetic alterations identified overall rigid N-H-backbone dynamics (S2 : 0.756), indicating an overall stable mutant protein. Moreover, the low median OA (<50 months) with a hazard ratio of 1.4 and clinical profile of MUC5B gene showed high median expression corresponding to lymph node (N2) and tumor (T3) stages. Our study concludes by highlighting the functional role of O-glycosylated and mutant MUC5B in promoting LUAD by immune suppression. Further, clinical gene expression validation of MUC5B suggests its potential role as a diagnostic biomarker for LUAD metastasis.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Early Detection of Cancer , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Algorithms , Glycosylation , Tumor Microenvironment/genetics , Mucin-5B/genetics
3.
Mol Divers ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38795259

ABSTRACT

Colorectal cancer (CRC) is the third most diagnosed and highly fatal malignancy, presenting serious health concerns worldwide. The search for an effective cure for CRC is challenging and poses a serious concern. Kaempferol is a potent anti-cancerous bioactive compound often suggested for treating various cancers, including CRC. However, its underlying molecular mechanism against CRC remains unclear. The present study delves into kaempferol's molecular pathways and underlying molecular mechanisms against CRC targets. The target protein-coding genes for kaempferol were retrieved, and the CRC-associated genes were curated. Twelve common targets with a disease specificity index of > 0.6 were validated for their protein expression at different stages of CRC. Over-expressed USP1, SETD7, POLH, TDP1 and RACGAP1 were selected for further studies. The binding affinities of kaempferol to the corresponding proteins were evaluated using molecular docking and Molecular Dynamics (MD) simulations. SETD7 exhibited the highest binding affinity with the lowest binding energy (- 8.06 kcal/mol). Additionally, the MD simulation, and MM-PBSA conferred SETD7-kaempferol complex had the least root-mean-square deviation with lower interaction energy and higher conformational stability. The protein-protein interaction of SETD7 constructed revealed direct interactors, namely, DNMT1, FOXO1, FOXO3, FOXO4, H3-3B, H3-4, H3C12, H3C13, SETD7, SIRT1 and TP53, have a potential role in cancer progression through FOXO signalling. In summary, our study revealed kaempferol's multi-target and synergistic effect on multiple CRC targets and its underlying mechanisms. Finally, the study recommends in-vitro and in-vivo trials for validation of anti-cancerous drugs for CRC.

4.
J Gene Med ; 25(12): e3556, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37358013

ABSTRACT

BACKGROUND: Altered tumor microenvironment (TME) is characterized in clear cell renal cell carcinoma (ccRCC) as a result of the heterogeneity observed in the TME. Modulations in TME have shown tumor metastasis promotion; hence, identifying TME-based biomarkers can be critical for theranostics application. METHODS: Here, we performed an integrated systems biology approach utilizing differential gene expression, network metrics and clinical samples cohorts to prioritize the major deregulated genes and their associated pathways specific for metastasis. RESULTS: The gene expression profiling of 140 ccRCC samples resulted in 3657 differentially expressed genes, from which a network of 1867 up-regulated genes were further computed using network metrics for screening hub-genes. The specific pathways of ccRCC entailed through functional enrichment analysis of the hub-gene clusters indicated the role of the identified hub-genes in the enriched pathways, further validating the functional significance of the hub-genes. The positive correlation of TME cells, namely cancer-associated fibroblasts (CAFs) and its biomarkers (FAP and S100A4) with FN1, signified the role of hub-gene signaling for promoting metastasis in ccRCC. Thereafter, comparative expression, differential methylation, genetic alteration and overall survival analysis were analyzed to validate the screened hub-genes. CONCLUSIONS: The hub-genes were validated and prioritized by correlating with expression-based parameters, including histological grades, tumor, metastatic and pathological stages (based on median transcript per million; analysis of variance [ANOVA], P ≤ 0.05) from a clinically curated ccRCC dataset to further substantiate the translational benefits of the screened hub-genes as potential diagnostic biomarkers for ccRCC.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cancer-Associated Fibroblasts/chemistry , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Gene Expression Profiling , Kidney Neoplasms/pathology , Tumor Microenvironment/genetics
5.
J Mol Recognit ; 36(8): e3042, 2023 08.
Article in English | MEDLINE | ID: mdl-37258416

ABSTRACT

Prostate adenocarcinoma (PRAD) is the second leading cause of death in men and the key factor that attributes to the severity and higher mortality rates is the tumor's ability to promote osteoblastic metastases (OM). Currently, no blood-based biomarkers are present that bridges the crosstalk between PRAD and OM progression. Conversely, circulatory microRNAs (miRNAs) are gaining interest among the scientific community for its potential as blood-based markers for cancer detection. Using computational pipeline, this study screened exosome-based miRNA that is functionally regulating OM in PRAD. We retrieved the expression profile of miRNA, mRNA from PRAD microarray, and RNA-Seq samples deposited in global repositories and identified the differentially expressed miRNAs (DEMs) and differentially expressed genes. Thereafter, the average expression of the miRNAs was identified in extracellular vesicle specifically in exosomes. Survival analysis and clinical profiling identified functionally significant miR-92a-3p to be a key factor in OM. This was further examined by the interactions with various noncoding RNA elements, transcription factors, oncogenes, tumor suppressor genes, and protein kinases regulated by miR-92a-3p. Identifying the expression pattern, nodal metastasis, Gleason score, and hazard ratio deciphered the critical role of the targets regulated by miR-92a-3p. Further, binding association analyzed through energy, seed match and accessibility showed the miRNA-targets involved in cytokine, TGF-ß, and Wnt signaling having close regulatory role in promoting OM. Our findings highlight the potent role of miR-92a-3p as blood-based diagnostic biomarker for OM. The comprehensive insights from our study can be elemental in designing diagnostic biomarker for PRAD.


Subject(s)
Adenocarcinoma , Exosomes , MicroRNAs , Male , Humans , Exosomes/genetics , Exosomes/metabolism , Prostate/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics
6.
Mol Genet Genomics ; 297(6): 1565-1580, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35982245

ABSTRACT

The delayed diagnosis of pancreatic cancer has resulted in rising mortality rate and low survival rate that can be circumvented using potent theranostics biomarkers. The treatment gets complicated with delayed detection resulting in lowered 5-year relative survival rate. In our present study, we employed systems biology approach to identify central genes that play crucial roles in tumor progression. Pancreatic cancer genes collected from various databases were used to construct a statistically significant interactome with 812 genes that was further analysed thoroughly using topological parameters and functional enrichment analysis. The significant genes in the network were then identified based on the maximum degree parameter. The overall survival analysis indicated through hazard ratio [HR] and gene expression [log Fold Change] across pancreatic adenocarcinoma revealed the critical role of FN1 [HR 1.4; log2(FC) 5.748], FGA [HR 0.78; log2(FC) 1.639] FGG [HR 0.9; log2(FC) 1.597], C3 [HR 1.1; log2(FC) 2.637], and QSOX1 [HR 1.4; log2(FC) 2.371]. The functional significance of the identified hub genes signified the enrichment of integrin cell surface interactions and proteoglycan syndecan-mediated cell signaling. The differential expression, low overall survival and functional significance of FN1 gene implied its possible role in controlling metastasis in pancreatic cancer. Furthermore, alternate splice variants of FN1 gene showed 10 protein coding transcripts with conserved cell attachment site and functional domains indicating the variants' potential role in pancreatic cancer. The strong association of the identified hub-genes can be better directed to design potential theranostics biomarkers for metastasized pancreatic tumor.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Fibronectins/genetics , Fibronectins/metabolism , Gene Regulatory Networks , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Syndecans/genetics , Syndecans/metabolism , Integrins/genetics , Integrins/metabolism , Gene Expression Profiling/methods , Pancreatic Neoplasms
7.
Mol Biotechnol ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264528

ABSTRACT

Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, hence there is an urgent need for new and effective therapeutic options. DNA topoisomerase 2A (TOP2A) plays a crucial role in the cell cycle and is involved in CRC progression, making it essential to identify structural and functional relevant alterations. Among the 24 mutations, our findings indicated that mutation D1021Y has the most deleterious effect on the TOP2A protein. Based on virtual screening of 31,561 compounds, we identified three lead candidates: 17683 (nigrospoxydon C), 28461 (carpatamide D), and 28853 (6'-O-acetyl-isohomaarbutin), which showed promising inhibitory effect against TOP2A and its mutant form. These compounds were assessed for their stability using density functional theory (DFT) analysis, where carpatamide D possessed the least energy gap of 4.398 eV showing its high reactivity among all. Further, molecular docking also shows the carpatamide D as the top candidate, which exhibited favourable docking energy against the TOP2A wild type (- 7.47 kcal/mol) and with D1021Y mutant (- 7.62 kcal/mol) as compared to reference compound PK1, which showed - 6.11 kcal/mol TOP2A wild type and - 6.24 kcal/mol against mutant type. The molecular dynamics simulation was performed to analyse the dynamics and stability of complex, which revealed TOP2A_28641 and D1021Y_28641 complexes to be stable with least root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF). Molecular mechanics/Poisson-Boltzmann surface area calculations indicated that TOP2A_28641 and D1021Y_28641 complexes exhibited the lowest binding energy of - 23.55 kcal/mol and - 25.03 kcal/mol, respectively. Our findings suggest carpatamide D as a promising lead compound for the TOP2A_D1021Y targeted cancer therapies, which needs further experimental validation.

8.
RSC Adv ; 14(30): 21328-21341, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38979460

ABSTRACT

'High-risk' hypermutable clones of Pseudomonas aeruginosa disseminating extensive drug-resistance (XDR) have raised global health concerns with escalating mortality rates in immunocompromised patients. Mutations in conventional drug-targets under antibiotic stress necessitate structural understanding to formulate sustainable therapeutics. In the present study, the major ß-lactam antibiotic target, penicillin-binding protein-3 (PBP3) with mutations F533L and T91A, were identified in carbapenemase-positive P. aeruginosa isolates (n = 6) using whole genome sequencing. Antibiotic susceptibility tests showed susceptibility to cefiderocol (MIC ≤ 4 µg ml-1) despite pan-ß-lactam resistance in the isolates. Both the mutations reduced local intra-chain interactions in PBP3 that marginally increased the local flexibility (∼1%) in the structures to affect antibiotic-interactions. Molecular dynamics simulations confirmed the overall stability of the PBP3 mutants through root-mean square deviations, radius of gyration, solvent-accessibility and density curves, which favored their selection. Docking studies unveiled that the mutations in PBP3 elicited unfavorable stereochemical clashes with the conventional antibiotics thereby increasing their inhibition constants (IC) up to ∼50 fold. It was deciphered that cefiderocol retained its susceptibility despite mutations in PBP3, due to its higher average binding affinity (ΔG: -8.2 ± 0.4 kcal mol-1) towards multiple PBP-targets and lower average binding affinity (ΔG: -6.7 ± 0.7 kcal mol-1) to ß-lactamases than the other ß-lactam antibiotics. The molecular dynamics simulations and molecular mechanics Poisson Boltzmann surface area calculations further indicated energetically favorable binding for cefiderocol with PBP3 proteins. The study gave structural insight into emerging non-polar amino acid substitutions in PBP3 causing XDR and recommends prioritizing available antibiotics based on multi-target affinities to overcome challenges imposed by target-protein mutations.

9.
Hum Vaccin Immunother ; 19(1): 2199656, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37078597

ABSTRACT

The coronavirus disease (COVID-19) threat is subsiding through extensive vaccination worldwide. However, the pandemic imposed major disruptions in global immunization programs and has aggravated the risks of vaccine-preventable disease (VPD) outbreaks. Particularly, lower-middle-income regions with minimal vaccine coverage and circulating vaccine-derived viral strains, such as polio, suffered additional burden of accumulated zero-dose children, further making them vulnerable to VPDs. However, there is no compilation of routine immunization disruptions and recovery prospects. There is a noticeable change in the routine vaccination coverage across different phases of the pandemic in six distinct global regions. We have summarized the impact of COVID-19 on routine global vaccination programs and also identified the prospects of routine immunization to combat COVID-like outbreaks.


Subject(s)
COVID-19 , Vaccines , Child , Humans , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Immunization Schedule , Vaccination , Immunization Programs
10.
Med Oncol ; 39(12): 206, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36175717

ABSTRACT

Cancer has been constantly evolving and so is the research pertaining to cancer diagnosis and therapeutic regimens. Early detection and specific therapeutics are the key features of modern cancer therapy. These requirements can only be fulfilled with the integration of diverse high-throughput technologies. Integration of advanced omics methodology involving genomics, epigenomics, proteomics, and transcriptomics provide a clear understanding of multi-faceted cancer. In the past few years, tremendous high-throughput data have been generated from cancer genomics and epigenomic analyses, which on further methodological analyses can yield better biological insights. The major epigenetic alterations reported in cancer are DNA methylation levels, histone post-translational modifications, and epi-miRNA regulating the oncogenes and tumor suppressor genes. While the genomic analyses like gene expression profiling, cancer gene prediction, and genome annotation divulge the genetic alterations in oncogenes or tumor suppressor genes. Also, systems biology approach using biological networks is being extensively used to identify novel cancer biomarkers. Therefore, integration of these multi-dimensional approaches will help to identify potential diagnostic and therapeutic biomarkers. Here, we reviewed the critical databases and tools dedicated to various epigenomic and genomic alterations in cancer. The review further focuses on the multi-omics resources available for further validating the identified cancer biomarkers. We also highlighted the tools for cancer biomarker discovery using a systems biology approach utilizing genomic and epigenomic data. Biomarkers predicted using such integrative approaches are shown to be more clinically relevant.


Subject(s)
MicroRNAs , Neoplasms , Biomarkers, Tumor/genetics , Histones , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine
11.
Comput Struct Biotechnol J ; 20: 4271-4287, 2022.
Article in English | MEDLINE | ID: mdl-36051887

ABSTRACT

Parkinson's disease (PD) has been designated as one of the priority neurodegenerative disorders worldwide. Although diagnostic biomarkers have been identified, early onset detection and targeted therapy are still limited. An integrated systems and structural biology approach were adopted to identify therapeutic targets for PD. From a set of 49 PD associated genes, a densely connected interactome was constructed. Based on centrality indices, degree of interaction and functional enrichments, LRRK2, PARK2, PARK7, PINK1 and SNCA were identified as the hub-genes. PARK2 (Parkin) was finalized as a potent theranostic candidate marker due to its strong association (score > 0.99) with α-synuclein (SNCA), which directly regulates PD progression. Besides, modeling and validation of Parkin structure, an extensive virtual-screening revealed small (commercially available) inhibitors against Parkin. Molecule-258 (ZINC5022267) was selected as a potent candidate based on pharmacokinetic profiles, Density Functional Theory (DFT) energy calculations (ΔE = 6.93 eV) and high binding affinity (Binding energy = -6.57 ± 0.1 kcal/mol; Inhibition constant = 15.35 µM) against Parkin. Molecular dynamics simulation of protein-inhibitor complexes further strengthened the therapeutic propositions with stable trajectories (low structural fluctuations), hydrogen bonding patterns and interactive energies (>0kJ/mol). Our study encourages experimental validations of the novel drug candidate to prevent the auto-inhibition of Parkin mediated ubiquitination in PD.

SELECTION OF CITATIONS
SEARCH DETAIL