Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Main subject
Language
Publication year range
1.
J Am Chem Soc ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087647

ABSTRACT

The immobilization of molecular electrocatalysts on conductive electrodes is an appealing strategy for enhancing their overall activity relative to those of analogous molecular compounds. In this study, we report on the interfacial electrochemistry of self-assembled two-dimensional nanosheets of graphene nanoribbons (GNR-2DNS) and analogs containing a Rh-based hydrogen evolution reaction (HER) catalyst (RhGNR-2DNS) immobilized on conductive electrodes. Proton-coupled electron transfer (PCET) taking place at N-centers of the nanoribbons was utilized as an indirect reporter of the interfacial electric fields experienced by the monolayer nanosheet located within the electric double layer. The experimental Pourbaix diagrams were compared with a theoretical model, which derives the experimental Pourbaix slopes as a function of parameter f, a fraction of the interfacial potential drop experienced by the redox-active group. Interestingly, our study revealed that GNR-2DNS was strongly coupled to glassy carbon electrodes (f = 1), while RhGNR-2DNS was not (f = 0.15). We further investigated the HER mechanism by RhGNR-2DNS using electrochemical and X-ray absorption spectroelectrochemical methods and compared it to homogeneous molecular model compounds. RhGNR-2DNS was found to be an active HER electrocatalyst over a broader set of aqueous pH conditions than its molecular analogs. We find that the improved HER performance in the immobilized catalyst arises due to two factors. First, redox-active bipyrimidine-based ligands were shown to dramatically alter the activity of Rh sites by increasing the electron density at the active Rh center and providing RhGNR-2DNS with improved catalysis. Second, catalyst immobilization was found to prevent catalyst aggregation that was found to occur for the molecular analog in the basic pH. Overall, this study provides valuable insights into the mechanism by which catalyst immobilization can affect the overall electrocatalytic performance.

2.
J Phys Chem A ; 126(27): 4349-4358, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35766591

ABSTRACT

Proton-coupled electron transfer (PCET) was studied for the ground and excited electronic states of a [Ru(terpy)(bpm)(OH2)(PF6)2] complex, Ru-bpm. Cyclic voltammetry measurements show that the Ru(II)-aqua moiety undergoes PCET to form a Ru(IV)-oxo moiety in the anodic region, while the bpm ligand undergoes PCET to form bpmH2 in the cathodic region. The photophysical behavior of Ru-bpm was studied using steady-state and femtosecond transient UV-vis absorption spectroscopy, coupled with density functional theory (DFT) calculations. The lowest-lying excited state of Ru-bpm is described as a (Ru → bpm) metal-to-ligand charge-transfer (MLCT) state, while the metal-centered (MC) excited state was found computationally to be close in energy to the lowest-energy bright MLCT state (MC state was 0.16 eV above the MLCT state). The excited-state kinetics of Ru-bpm were found via transient absorption spectroscopy to be short-lived and were fit well to a biexponential function with lifetimes τ1 = 4 ps and τ2 = 65 ps in aqueous solution. Kinetic isotope effects of 1.75 (τ1) and 1.61 (τ2) were observed for both decay components, indicating that the solvent plays an important role in the excited-state dynamics of Ru-bpm. Based on the pH-dependent studies and the results from prior studies of similar Ru-complexes, we hypothesize that the 3MLCT state forms an excited-state hydrogen-bond adduct with the solvent molecules and that this process occurs with a 4 ps lifetime. The formation of such a hydrogen-bond complex is consistent with the electronic density accumulation at the peripheral N atoms of the bpm moiety in the 3MLCT state. The hydrogen-bonded state 3MLCT decays to the ground state with a 65 ps lifetime. Such a short lifetime is likely associated with the efficient vibrational energy transfer from the 3MLCT state to the solvent.


Subject(s)
Ruthenium , Electronics , Electrons , Ligands , Protons , Ruthenium/chemistry , Solvents
3.
J Chem Phys ; 153(12): 124903, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33003752

ABSTRACT

We report a study of chromophore-catalyst assemblies composed of light harvesting hexabenzocoronene (HBC) chromophores axially coordinated to two cobaloxime complexes. The chromophore-catalyst assemblies were prepared using bottom-up synthetic methodology and characterized using solid-state NMR, IR, and x-ray absorption spectroscopy. Detailed steady-state and time-resolved laser spectroscopy was utilized to identify the photophysical properties of the assemblies, coupled with time-dependent DFT calculations to characterize the relevant excited states. The HBC chromophores tend to assemble into aggregates that exhibit high exciton diffusion length (D = 18.5 molecule2/ps), indicating that over 50 chromophores can be sampled within their excited state lifetime. We find that the axial coordination of cobaloximes leads to a significant reduction in the excited state lifetime of the HBC moiety, and this finding was discussed in terms of possible electron and energy transfer pathways. By comparing the experimental quenching rate constant (1.0 × 109 s-1) with the rate constant estimates for Marcus electron transfer (5.7 × 108 s-1) and Förster/Dexter energy transfers (8.1 × 106 s-1 and 1.0 × 1010 s-1), we conclude that both Dexter energy and Marcus electron transfer process are possible deactivation pathways in CoQD-A. No charge transfer or energy transfer intermediate was detected in transient absorption spectroscopy, indicating fast, subpicosecond return to the ground state. These results provide important insights into the factors that control the photophysical properties of photocatalytic chromophore-catalyst assemblies.

4.
Nat Chem ; 15(9): 1247-1254, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37414882

ABSTRACT

A major impediment to Li-O2 battery commercialization is the low discharge capacities resulting from electronically insulating Li2O2 film growth on carbon electrodes. Redox mediation offers an effective strategy to drive oxygen chemistry into solution, avoiding surface-mediated Li2O2 film growth and extending discharge lifetimes. As such, the exploration of diverse redox mediator classes can aid the development of molecular design criteria. Here we report a class of triarylmethyl cations that are effective at enhancing discharge capacities up to 35-fold. Surprisingly, we observe that redox mediators with more positive reduction potentials lead to larger discharge capacities because of their improved ability to suppress the surface-mediated reduction pathway. This result provides important structure-property relationships for future improvements in redox-mediated O2/Li2O2 discharge capacities. Furthermore, we applied a chronopotentiometry model to investigate the zones of redox mediator standard reduction potentials and the concentrations needed to achieve efficient redox mediation at a given current density. We expect this analysis to guide future redox mediator exploration.

5.
Adv Mater ; 35(40): e2305006, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572365

ABSTRACT

The energies of the frontier molecular orbitals determine the optoelectronic properties in organic films, which are crucial for their application, and strongly depend on the morphology and supramolecular structure. The impact of the latter two properties on the electronic energy levels relies primarily on nearest-neighbor interactions, which are difficult to study due to their nanoscale nature and heterogeneity. Here, an automated method is presented for fabricating thin films with a tailored ratio of surface to bulk sites and a controlled extension of domain edges, both of which are used to control nearest-neighbor interactions. This method uses a Langmuir-Schaefer-type rolling transfer of Langmuir layers (rtLL) to minimize flow during the deposition of rigid Langmuir layers composed of π-conjugated molecules. Using UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy, it is shown that the rtLL method advances the deposition of multi-Langmuir layers and enables the production of films with defined morphology. The variation in nearest-neighbor interactions is thus achieved and the resulting systematically tuned lowest unoccupied molecular orbital (LUMO) energies (determined via square-wave voltammetry) enable the establishment of a model that functionally relates the LUMO energies to a morphological descriptor, allowing for the prediction of the range of accessible LUMO energies.

6.
Nat Commun ; 12(1): 3288, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078884

ABSTRACT

Electrocatalytic nanocarbon (EN) is a class of material receiving intense interest as a potential replacement for expensive, metal-based electrocatalysts for energy conversion and chemical production applications. The further development of EN will require an intricate knowledge of its catalytic behaviors, however, the true nature of their electrocatalytic activity remains elusive. This review highlights work that contributed valuable knowledge in the elucidation of EN catalytic mechanisms. Experimental evidence from spectroscopic studies and well-defined molecular models, along with the survey of computational studies, is summarized to document our current mechanistic understanding of EN-catalyzed oxygen, carbon dioxide and nitrogen electrochemistry. We hope this review will inspire future development of synthetic methods and in situ spectroscopic tools to make and study well-defined EN structures.

SELECTION OF CITATIONS
SEARCH DETAIL