Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Am J Med Genet A ; 170A(5): 1142-7, 2016 May.
Article in English | MEDLINE | ID: mdl-26842963

ABSTRACT

ADAT3-related intellectual disability has been recently described in 24 individuals from eight Saudi families who had cognitive impairment and strabismus. Other common features included growth failure, microcephaly, tone abnormalities, epilepsy, and nonspecific brain abnormalities. A single homozygous founder mutation (c.382G>A:p.(V128M)) in the ADAT3 gene, which encodes a protein that functions in tRNA editing, was identified in all affected individuals. In this report, we present additional 15 individuals from 11 families (10 Saudis and 1 Emirati) who are homozygous for the same founder mutation. In addition to the universal findings of intellectual disability and strabismus, the majority exhibited microcephaly and growth failure. Additional features not reported in the original cohort include dysmorphic facial features (prominent forehead, up-slanted palpebral fissures, epicanthus, and depressed nasal bridge), behavioral problems (hyperactivity and aggressiveness), recurrent otitis media, and growth hormone deficiency. ADAT3-related intellectual disability is an important recognizable cause of intellectual disability in Arabia.


Subject(s)
Adenosine Deaminase/genetics , Cognitive Dysfunction/genetics , Intellectual Disability/genetics , Strabismus/genetics , Adolescent , Adult , Child , Child, Preschool , Cognitive Dysfunction/complications , Cognitive Dysfunction/physiopathology , Female , Founder Effect , Growth Hormone/genetics , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/physiopathology , Male , Phenotype , Strabismus/complications , Strabismus/physiopathology
2.
Nat Commun ; 11(1): 595, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001716

ABSTRACT

Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients' primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy.


Subject(s)
Epilepsy/genetics , Genes, Recessive , Loss of Function Mutation/genetics , Oxidoreductases/genetics , Uridine Diphosphate Glucose Dehydrogenase/genetics , Adolescent , Alleles , Animals , Child , Child, Preschool , Female , Humans , Infant , Kinetics , Male , Organoids/pathology , Oxidoreductases/chemistry , Pedigree , Protein Domains , Syndrome , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL