Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Biomacromolecules ; 25(5): 2814-2822, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38598701

ABSTRACT

Peptide-based hydrogels have gained considerable attention as a compelling platform for various biomedical applications in recent years. Their attractiveness stems from their ability to seamlessly integrate diverse properties, such as biocompatibility, biodegradability, easily adjustable hydrophilicity/hydrophobicity, and other functionalities. However, a significant drawback is that most of the functional self-assembling peptides cannot form robust hydrogels suitable for biological applications. In this study, we present the synthesis of novel peptide-PEG conjugates and explore their comprehensive hydrogel properties. The hydrogel comprises double networks, with the first network formed through the self-assembly of peptides to create a ß-sheet secondary structure. The second network is established through covalent bond formation via N-hydroxysuccinimide chemistry between peptides and a 4-arm PEG to form a covalently linked network. Importantly, our findings reveal that this hydrogel formation method can be applied to other peptides containing lysine-rich sequences. Upon encapsulation of the hydrogel with antimicrobial peptides, the hydrogel retained high bacterial killing efficiency while showing minimum cytotoxicity toward mammalian cells. We hope that this method opens new avenues for the development of a novel class of peptide-polymer hydrogel materials with enhanced performance in biomedical contexts, particularly in reducing the potential for infection in applications of tissue regeneration and drug delivery.


Subject(s)
Biomedical Technology , Hydrogels , Peptides , Polyethylene Glycols , Hydrogels/chemical synthesis , Hydrogels/pharmacology , Hydrogels/standards , Hydrogels/toxicity , Peptides/chemistry , Polyethylene Glycols/chemistry , Biomedical Technology/methods , Humans , Cell Line , Fibroblasts/drug effects , Rheology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Cell Survival/drug effects , Escherichia coli/drug effects
2.
Chem Asian J ; 17(19): e202200724, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35986893

ABSTRACT

Self-assembled peptides are an emerging family of biomaterials that show great promise for a range of biomedical and biotechnological applications. Introducing and tuning the pH-responsiveness of the assembly is highly desirable for improving their biological activities. Inspired by proteins with internal ionizable residues, we report a simple but effective approach to constructing pH-responsive peptide assembly containing unnatural ionic amino acids with an aliphatic tertiary amine side chain. Through a combined experimental and computational investigation, we demonstrate that these residues can be accommodated and stabilized within the internal hydrophobic compartment of the peptide assembly. The hydrophobic microenvironment shifts their pKa significantly from a basic pH typically found for free amines to a more biologically relevant pH in the weakly acidic range. The pH-induced ionization and ionization-dependent self-assembly and disassembly are thoroughly investigated and correlated with the biological activity of the assembly. This new approach has unique advantages in tuning the pH-responsiveness of self-assembled peptides across a large pH range in a complex biological environment. We anticipate the ionizable amino acids developed here can be widely applicable to the synthesis and self-assembly of many amphiphilic peptides with endowed pH-responsive properties to enhance their biological activities toward applications ranging from targeted therapeutic delivery to proton transport.


Subject(s)
Amino Acids , Protons , Amines , Biocompatible Materials/chemistry , Hydrogen-Ion Concentration , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL