Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Immunity ; 53(4): 824-839.e10, 2020 10 13.
Article in English | MEDLINE | ID: mdl-33053331

ABSTRACT

CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226-/- mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.


Subject(s)
Antigens, Differentiation, T-Lymphocyte/immunology , CD8-Positive T-Lymphocytes/immunology , Neoplasms/immunology , T-Box Domain Proteins/immunology , Animals , Humans , Immune Checkpoint Inhibitors/immunology , Immunotherapy/methods , Mice , Mice, Inbred C57BL , Neoplasms/therapy , Programmed Cell Death 1 Receptor/immunology , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology , Transcriptome/immunology , Tumor Microenvironment/immunology , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
2.
STAR Protoc ; 3(2): 101444, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35677615

ABSTRACT

Here, we present a protocol for flow cytometry analysis of endothelial cells (ECs) and CD8+ T cells in murine tumor models, at baseline and after cancer immunotherapy with anti-PD-1/anti-CTLA-4 antibodies. We provide gating strategies for identification of specific cell subsets including ECs from tumor-associated high endothelial venules (TA-HEVs), stem-like, and terminally exhausted CD8+ T cells. This protocol represents a valuable tool for the analysis of rare subsets of tumor ECs and CD8+ T cells with critical roles in antitumor immunity. For complete details on the use and execution of this protocol, please refer to Asrir et al. (2022).


Subject(s)
Neoplasms , Programmed Cell Death 1 Receptor , Animals , CD8-Positive T-Lymphocytes , Endothelial Cells , Flow Cytometry , Immunotherapy/methods , Mice , Neoplasms/therapy
3.
Cancer Cell ; 40(3): 318-334.e9, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35120598

ABSTRACT

Recruitment of lymphocytes into tumors is critical for anti-tumor immunity and efficacious immunotherapy. We show in murine models that tumor-associated high endothelial venules (TA-HEVs) are major sites of lymphocyte entry into tumors at baseline and upon treatment with anti-PD-1/anti-CTLA-4 immune checkpoint blockade (ICB). TA-HEV endothelial cells (TA-HECs) derive from post-capillary venules, co-express MECA-79+ HEV sialomucins and E/P-selectins, and are associated with homing and infiltration into tumors of various T cell subsets. Intravital microscopy further shows that TA-HEVs are the main sites of lymphocyte arrest and extravasation into ICB-treated tumors. Increasing TA-HEC frequency and maturation increases the proportion of tumor-infiltrating stem-like CD8+ T cells, and ameliorates ICB efficacy. Analysis of tumor biopsies from 93 patients with metastatic melanoma reveals that TA-HEVs are predictive of better response and survival upon treatment with anti-PD-1/anti-CTLA-4 combination. These studies provide critical insights into the mechanisms governing lymphocyte trafficking in cancer immunity and immunotherapy.


Subject(s)
Melanoma , Programmed Cell Death 1 Receptor , Animals , CD8-Positive T-Lymphocytes , CTLA-4 Antigen , Endothelial Cells , Humans , Immunologic Factors , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Melanoma/pathology , Mice , T-Lymphocyte Subsets , Venules/pathology
4.
Nat Commun ; 8(1): 847, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29018187

ABSTRACT

Follicular helper T cells regulate high-affinity antibody production. Memory follicular helper T cells can be local in draining lymphoid organs and circulate in the blood, but the underlying mechanisms of this subdivision are unresolved. Here we show that both memory follicular helper T subsets sustain B-cell responses after reactivation. Local cells promote more plasma cell differentiation, whereas circulating cells promote more secondary germinal centers. In parallel, local memory B cells are homogeneous and programmed to become plasma cells, whereas circulating memory B cells are able to rediversify. Local memory follicular helper T cells have higher affinity T-cell receptors, which correlates with expression of peptide MHC-II at the surface of local memory B cells only. Blocking T-cell receptor-peptide MHC-II interactions induces the release of local memory follicular helper T cells in the circulating compartment. Our studies show that memory follicular helper T localization is highly intertwined with memory B cells, a finding that has important implications for vaccine design.Tfh cells can differentiate into memory cells. Here the authors describe distinct functional and phenotypic profiles of these memory Tfh cells dependent on their anatomical localization to the lymphoid organs or to the circulation.


Subject(s)
Immunologic Memory , T-Lymphocytes, Helper-Inducer/physiology , Animals , Lymph Nodes/cytology , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Spleen/cytology
SELECTION OF CITATIONS
SEARCH DETAIL