Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 176(6): 1265-1281.e24, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30827681

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease that resides within a complex microenvironment, complicating efforts to understand how different cell types contribute to disease progression. We combined single-cell RNA sequencing and genotyping to profile 38,410 cells from 40 bone marrow aspirates, including 16 AML patients and five healthy donors. We then applied a machine learning classifier to distinguish a spectrum of malignant cell types whose abundances varied between patients and between subclones in the same tumor. Cell type compositions correlated with prototypic genetic lesions, including an association of FLT3-ITD with abundant progenitor-like cells. Primitive AML cells exhibited dysregulated transcriptional programs with co-expression of stemness and myeloid priming genes and had prognostic significance. Differentiated monocyte-like AML cells expressed diverse immunomodulatory genes and suppressed T cell activity in vitro. In conclusion, we provide single-cell technologies and an atlas of AML cell states, regulators, and markers with implications for precision medicine and immune therapies. VIDEO ABSTRACT.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Transcriptome/genetics , Adult , Base Sequence/genetics , Bone Marrow , Bone Marrow Cells/cytology , Cell Line, Tumor , Disease Progression , Female , Genotype , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/physiopathology , Machine Learning , Male , Middle Aged , Mutation , Prognosis , RNA , Signal Transduction , Single-Cell Analysis/methods , Tumor Microenvironment , Exome Sequencing/methods
2.
Nature ; 613(7944): 565-574, 2023 01.
Article in English | MEDLINE | ID: mdl-36410718

ABSTRACT

Programming T cells to distinguish self from non-self is a vital, multi-step process that occurs in the thymus1-4. Signalling through the pre-T cell receptor (preTCR), a CD3-associated heterodimer comprising an invariant pTα chain and a clone-specific ß chain, is a critical early checkpoint in thymocyte development within the αß T cell lineage5,6. PreTCRs arrayed on CD4-CD8- double-negative thymocytes ligate peptides bound to major histocompatibility complex molecules (pMHC) on thymic stroma, similar to αß T cell receptors that appear on CD4+CD8+ double-positive thymocytes, but via a different molecular docking strategy7-10. Here we show the consequences of these distinct interactions for thymocyte progression using synchronized fetal thymic progenitor cultures that differ in the presence or absence of pMHC on support stroma, and single-cell transcriptomes at key thymocyte developmental transitions. Although major histocompatibility complex (MHC)-negative stroma fosters αß T cell differentiation, the absence of preTCR-pMHC interactions leads to deviant thymocyte transcriptional programming associated with dedifferentiation. Highly proliferative double-negative and double-positive thymocyte subsets emerge, with antecedent characteristics of T cell lymphoblastic and myeloid malignancies. Compensatory upregulation of diverse MHC class Ib proteins in B2m/H2-Ab1 MHC-knockout mice partially safeguards in vivo thymocyte progression, although disseminated double-positive thymic tumours may develop with ageing. Thus, as well as promoting ß chain repertoire broadening for subsequent αß T cell receptor utilization, preTCR-pMHC interactions limit cellular plasticity to facilitate normal thymocyte differentiation and proliferation that, if absent, introduce developmental vulnerabilities.


Subject(s)
Cell Dedifferentiation , Histocompatibility Antigens Class I , Receptors, Antigen, T-Cell , Thymocytes , Animals , Mice , Mice, Knockout , Molecular Docking Simulation , Peptides/immunology , Peptides/metabolism , Thymocytes/cytology , Thymocytes/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism
3.
Mol Cell ; 73(6): 1174-1190.e12, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30745086

ABSTRACT

Chromatin loops enable transcription-factor-bound distal enhancers to interact with their target promoters to regulate transcriptional programs. Although developmental transcription factors such as active forms of Notch can directly stimulate transcription by activating enhancers, the effect of their oncogenic subversion on the 3D organization of cancer genomes is largely undetermined. By mapping chromatin looping genome-wide in Notch-dependent triple-negative breast cancer and B cell lymphoma, we show that beyond the well-characterized role of Notch as an activator of distal enhancers, Notch regulates its direct target genes by instructing enhancer repositioning. Moreover, a large fraction of Notch-instructed regulatory loops form highly interacting enhancer and promoter spatial clusters termed "3D cliques." Loss- and gain-of-function experiments show that Notch preferentially targets hyperconnected 3D cliques that regulate the expression of crucial proto-oncogenes. Our observations suggest that oncogenic hijacking of developmental transcription factors can dysregulate transcription through widespread effects on the spatial organization of cancer genomes.


Subject(s)
Cell Transformation, Neoplastic/genetics , Chromatin/genetics , Lymphoma, B-Cell/genetics , Oncogenes , Receptors, Notch/genetics , Triple Negative Breast Neoplasms/genetics , Binding Sites , Cell Lineage/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chromatin/metabolism , Chromatin Assembly and Disassembly , Cyclin D1/genetics , Cyclin D1/metabolism , Enhancer Elements, Genetic , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , HEK293 Cells , Humans , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Mutation , Nucleic Acid Conformation , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Receptors, Notch/metabolism , Signal Transduction/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
4.
Eur J Immunol ; 53(9): e2250362, 2023 09.
Article in English | MEDLINE | ID: mdl-37366295

ABSTRACT

Nonhematopoietic lymph node stromal cells (LNSCs) regulate lymphocyte trafficking, survival, and function for key roles in host defense, autoimmunity, alloimmunity, and lymphoproliferative disorders. However, the study of LNSCs in human diseases is complicated by a dependence on viable lymphoid tissues, which are most often excised prior to establishment of a specific diagnosis. Here, we demonstrate that cryopreservation can be used to bank lymphoid tissue for the study of LNSCs in human disease. Using human tonsils and lymph nodes (LN), lymphoid tissue fragments were cryopreserved for subsequent enzymatic digestion and recovery of viable nonhematopoietic cells. Flow cytometry and single-cell transcriptomics identified comparable proportions of LN stromal cell types in fresh and cryopreserved tissue. Moreover, cryopreservation had little effect on transcriptional profiles, which showed significant overlap between tonsils and LN. The presence and spatial distribution of transcriptionally defined cell types were confirmed by in situ analyses. Our broadly applicable approach promises to greatly enable research into the roles of LNSCs in human disease.


Subject(s)
Biological Specimen Banks , Cryopreservation , Humans , Lymphocytes , Lymph Nodes/pathology , Stromal Cells
6.
Semin Cancer Biol ; 85: 95-106, 2022 10.
Article in English | MEDLINE | ID: mdl-33862222

ABSTRACT

Notch receptors participate in a conserved pathway in which ligands expressed on neighboring cells trigger a series of proteolytic cleavages that allow the intracellular portion of the receptor to travel to the nucleus and form a short-lived transcription complex that turns on target gene expression. The directness and seeming simplicity of this signaling mechanism belies the complexity of the outcomes of Notch signaling in normal cells, which are highly context and dosage dependent. This complexity is reflected in the diverse roles of Notch in cancers of various types, in which Notch may be oncogenic or tumor suppressive and may have a wide spectrum of effects on tumor cells and stromal elements. This review provides an overview of the roles of Notch in cancer and discusses challenges to clinical translation of Notch targeting agents as well as approaches that may overcome these hurdles.


Subject(s)
Neoplasms , Receptors, Notch , Humans , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction , Neoplasms/genetics , Neoplasms/metabolism , Oncogenes , Ligands
7.
Blood ; 137(18): 2463-2480, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33227818

ABSTRACT

Lineage plasticity and stemness have been invoked as causes of therapy resistance in cancer, because these flexible states allow cancer cells to dedifferentiate and alter their dependencies. We investigated such resistance mechanisms in relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) carrying activating NOTCH1 mutations via full-length single-cell RNA sequencing (scRNA-seq) of malignant and microenvironmental cells. We identified 2 highly distinct stem-like states that critically differed with regard to cell cycle and oncogenic signaling. Fast-cycling stem-like leukemia cells demonstrated Notch activation and were effectively eliminated in patients by Notch inhibition, whereas slow-cycling stem-like cells were Notch independent and rather relied on PI3K signaling, likely explaining the poor efficacy of Notch inhibition in this disease. Remarkably, we found that both stem-like states could differentiate into a more mature leukemia state with prominent immunomodulatory functions, including high expression of the LGALS9 checkpoint molecule. These cells promoted an immunosuppressive leukemia ecosystem with clonal accumulation of dysfunctional CD8+ T cells that expressed HAVCR2, the cognate receptor for LGALS9. Our study identified complex interactions between signaling programs, cellular plasticity, and immune programs that characterize ETP-ALL, illustrating the multidimensionality of tumor heterogeneity. In this scenario, combination therapies targeting diverse oncogenic states and the immune ecosystem seem most promising to successfully eliminate tumor cells that escape treatment through coexisting transcriptional programs.


Subject(s)
Carcinogenesis , Galectins/metabolism , Gene Expression Regulation, Leukemic , Immune Evasion , Neoplastic Stem Cells/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Single-Cell Analysis/methods , Adolescent , Adult , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Child , Child, Preschool , Drug Resistance, Neoplasm , Female , Follow-Up Studies , Galectins/genetics , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Infant , Male , Middle Aged , Mutation , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Prognosis , RNA-Seq/methods , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Young Adult
8.
Nature ; 547(7662): 217-221, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28678778

ABSTRACT

Effective anti-tumour immunity in humans has been associated with the presence of T cells directed at cancer neoantigens, a class of HLA-bound peptides that arise from tumour-specific mutations. They are highly immunogenic because they are not present in normal tissues and hence bypass central thymic tolerance. Although neoantigens were long-envisioned as optimal targets for an anti-tumour immune response, their systematic discovery and evaluation only became feasible with the recent availability of massively parallel sequencing for detection of all coding mutations within tumours, and of machine learning approaches to reliably predict those mutated peptides with high-affinity binding of autologous human leukocyte antigen (HLA) molecules. We hypothesized that vaccination with neoantigens can both expand pre-existing neoantigen-specific T-cell populations and induce a broader repertoire of new T-cell specificities in cancer patients, tipping the intra-tumoural balance in favour of enhanced tumour control. Here we demonstrate the feasibility, safety, and immunogenicity of a vaccine that targets up to 20 predicted personal tumour neoantigens. Vaccine-induced polyfunctional CD4+ and CD8+ T cells targeted 58 (60%) and 15 (16%) of the 97 unique neoantigens used across patients, respectively. These T cells discriminated mutated from wild-type antigens, and in some cases directly recognized autologous tumour. Of six vaccinated patients, four had no recurrence at 25 months after vaccination, while two with recurrent disease were subsequently treated with anti-PD-1 (anti-programmed cell death-1) therapy and experienced complete tumour regression, with expansion of the repertoire of neoantigen-specific T cells. These data provide a strong rationale for further development of this approach, alone and in combination with checkpoint blockade or other immunotherapies.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Melanoma/immunology , Melanoma/therapy , Precision Medicine/methods , Amino Acid Sequence , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, Neoplasm/chemistry , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/adverse effects , Cancer Vaccines/chemistry , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens Class II/immunology , Humans , Machine Learning , Melanoma/genetics , Mutation , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/prevention & control , Patient Safety , Programmed Cell Death 1 Receptor/antagonists & inhibitors
9.
Proc Natl Acad Sci U S A ; 117(28): 16292-16301, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32601208

ABSTRACT

Notch pathway signaling is implicated in several human cancers. Aberrant activation and mutations of Notch signaling components are linked to tumor initiation, maintenance, and resistance to cancer therapy. Several strategies, such as monoclonal antibodies against Notch ligands and receptors, as well as small-molecule γ-secretase inhibitors (GSIs), have been developed to interfere with Notch receptor activation at proximal points in the pathway. However, the use of drug-like small molecules to target the downstream mediators of Notch signaling, the Notch transcription activation complex, remains largely unexplored. Here, we report the discovery of an orally active small-molecule inhibitor (termed CB-103) of the Notch transcription activation complex. We show that CB-103 inhibits Notch signaling in primary human T cell acute lymphoblastic leukemia and other Notch-dependent human tumor cell lines, and concomitantly induces cell cycle arrest and apoptosis, thereby impairing proliferation, including in GSI-resistant human tumor cell lines with chromosomal translocations and rearrangements in Notch genes. CB-103 produces Notch loss-of-function phenotypes in flies and mice and inhibits the growth of human breast cancer and leukemia xenografts, notably without causing the dose-limiting intestinal toxicity associated with other Notch inhibitors. Thus, we describe a pharmacological strategy that interferes with Notch signaling by disrupting the Notch transcription complex and shows therapeutic potential for treating Notch-driven cancers.


Subject(s)
Receptors, Notch/metabolism , Small Molecule Libraries/pharmacology , Transcriptional Activation/drug effects , Animals , Apoptosis/drug effects , Binding Sites , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drosophila , Drug Resistance, Neoplasm/drug effects , HeLa Cells , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/chemistry , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Intestine, Small/drug effects , Intestine, Small/metabolism , Mice , Mutation , Phenotype , Protein Multimerization , Signal Transduction/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use
10.
Blood ; 136(26): 3051-3055, 2020 12 24.
Article in English | MEDLINE | ID: mdl-32961550

ABSTRACT

Adult-onset hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening disease of immune hyperactivation. Unlike pediatric HLH, adult HLH is rarely driven by germline genetic variants. Although numerous precipitating etiologies have been identified, the reason that HLH occurs in only a subset of individuals and how other factors contribute to the disease remains unknown. We hypothesized that clonal hematopoiesis (CH), a state in which somatic mutations in blood cells cause an expanded population of mutant hematopoietic cells and drive an aberrant inflammatory state, could contribute to adult-onset HLH. In a highly annotated cohort of older adults with HLH we found that CH was more prevalent than in control cohorts. Using the adult-onset HLH mouse model in which repeated treatments of the TLR9 agonist, ODN1826, was delivered to the mouse, we observed that macrophages carrying mutations in Tet2, one of the most commonly mutated genes in CH, have an enhanced inflammatory response to TLR9 agonism. Finally, mice carrying Tet2 mutations in the hematopoietic compartment (a common model for CH) displayed an exaggerated response to TLR9 agonism, including worse splenomegaly and anemia. Our data suggest that CH is more common in individuals with adult-onset HLH and can contribute to the pathophysiology of this disease.


Subject(s)
Clonal Hematopoiesis , Lymphohistiocytosis, Hemophagocytic/metabolism , Mutation , Adult , Age of Onset , Aged , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Female , Humans , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/pathology , Male , Mice , Mice, Mutant Strains , Middle Aged , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Toll-Like Receptor 9/agonists , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
11.
PLoS Genet ; 15(4): e1008039, 2019 04.
Article in English | MEDLINE | ID: mdl-30970016

ABSTRACT

The SWI/SNF-family chromatin remodeling protein ATRX is a tumor suppressor in sarcomas, gliomas and other malignancies. Its loss of function facilitates the alternative lengthening of telomeres (ALT) pathway in tumor cells, while it also affects Polycomb repressive complex 2 (PRC2) silencing of its target genes. To further define the role of inactivating ATRX mutations in carcinogenesis, we knocked out atrx in our previously reported p53/nf1-deficient zebrafish line that develops malignant peripheral nerve sheath tumors and gliomas. Complete inactivation of atrx using CRISPR/Cas9 was lethal in developing fish and resulted in an alpha-thalassemia-like phenotype including reduced alpha-globin expression. In p53/nf1-deficient zebrafish neither peripheral nerve sheath tumors nor gliomas showed accelerated onset in atrx+/- fish, but these fish developed various tumors that were not observed in their atrx+/+ siblings, including epithelioid sarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma and rare types of carcinoma. These cancer types are included in the AACR Genie database of human tumors associated with mutant ATRX, indicating that our zebrafish model reliably mimics a role for ATRX-loss in the early pathogenesis of these human cancer types. RNA-seq of p53/nf1- and p53/nf1/atrx-deficient tumors revealed that down-regulation of telomerase accompanied ALT-mediated lengthening of the telomeres in atrx-mutant samples. Moreover, inactivating mutations in atrx disturbed PRC2-target gene silencing, indicating a connection between ATRX loss and PRC2 dysfunction in cancer development.


Subject(s)
Sarcoma, Experimental/etiology , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , X-linked Nuclear Protein/deficiency , X-linked Nuclear Protein/genetics , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Carcinogenesis/genetics , Carcinogenesis/metabolism , Disease Models, Animal , Erythropoiesis , Female , Gene Knockout Techniques , Globins/genetics , Humans , Loss of Function Mutation , Male , Neurofibromin 1/deficiency , Neurofibromin 1/genetics , Sarcoma, Experimental/genetics , Sarcoma, Experimental/metabolism , Telomere Homeostasis/genetics , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism
12.
Genes Dev ; 28(6): 576-93, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24637115

ABSTRACT

Notch1 is required to generate the earliest embryonic hematopoietic stem cells (HSCs); however since Notch-deficient embryos die early in gestation, additional functions for Notch in embryonic HSC biology have not been described. We used two complementary genetic models to address this important biological question. Unlike Notch1-deficient mice, mice lacking the conserved Notch1 transcriptional activation domain (TAD) show attenuated Notch1 function in vivo and survive until late gestation, succumbing to multiple cardiac abnormalities. Notch1 TAD-deficient HSCs emerge and successfully migrate to the fetal liver but are decreased in frequency by embryonic day 14.5. In addition, TAD-deficient fetal liver HSCs fail to compete with wild-type HSCs in bone marrow transplant experiments. This phenotype is independently recapitulated by conditional knockout of Rbpj, a core Notch pathway component. In vitro analysis of Notch1 TAD-deficient cells shows that the Notch1 TAD is important to properly assemble the Notch1/Rbpj/Maml trimolecular transcription complex. Together, these studies reveal an essential role for the Notch1 TAD in fetal development and identify important cell-autonomous functions for Notch1 signaling in fetal HSC homeostasis.


Subject(s)
Gene Expression Regulation, Developmental , Hematopoietic Stem Cells/physiology , Receptor, Notch1/metabolism , Signal Transduction , Animals , Cell Line , Fetal Stem Cells , Gene Knock-In Techniques , Gene Knockout Techniques , Hematopoietic Stem Cells/metabolism , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Mice , Mutation , Protein Structure, Tertiary/genetics , Receptor, Notch1/genetics , Survival Analysis
13.
Blood ; 134(17): 1430-1440, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31383641

ABSTRACT

Antibodies that bind CD47 on tumor cells and prevent interaction with SIRPα on phagocytes are active against multiple cancer types including T-cell lymphoma (TCL). Here we demonstrate that surface CD47 is heterogeneously expressed across primary TCLs, whereas major histocompatibility complex (MHC) class I, which can also suppress phagocytosis, is ubiquitous. Multiple monoclonal antibodies (mAbs) that block CD47-SIRPα interaction promoted phagocytosis of TCL cells, which was enhanced by cotreatment with antibodies targeting MHC class I. Expression levels of surface CD47 and genes that modulate CD47 pyroglutamation did not correlate with the extent of phagocytosis induced by CD47 blockade in TCL lines. In vivo treatment of multiple human TCL patient-derived xenografts or an immunocompetent murine TCL model with a short course of anti-CD47 mAb markedly reduced lymphoma burden and extended survival. Depletion of macrophages reduced efficacy in vivo, whereas depletion of neutrophils had no effect. F(ab')2-only fragments of anti-CD47 antibodies failed to induce phagocytosis by human macrophages, indicating a requirement for Fc-Fcγ receptor interactions. In contrast, F(ab')2-only fragments increased phagocytosis by murine macrophages independent of SLAMF7-Mac-1 interaction. Full-length anti-CD47 mAbs also induced phagocytosis by Fcγ receptor-deficient murine macrophages. An immunoglobulin G1 anti-CD47 mAb induced phagocytosis and natural killer cell-mediated cytotoxicity of TCL cells that was augmented by cotreatment with mogamulizumab, an anti-CCR4 mAb, or a mAb blocking MHC class I. These studies help explain the disparate activity of monotherapy with agents that block CD47 in murine models compared with patients. They also have direct translational implications for the deployment of anti-CD47 mAbs alone or in combination.


Subject(s)
Antigens, Differentiation/immunology , Antineoplastic Agents, Immunological/pharmacology , CD47 Antigen/immunology , Lymphoma, T-Cell/drug therapy , Receptors, IgG/immunology , Receptors, Immunologic/immunology , Animals , Antineoplastic Agents, Immunological/therapeutic use , CD47 Antigen/antagonists & inhibitors , Cell Line, Tumor , Humans , Lymphoma, T-Cell/immunology , Lymphoma, T-Cell/pathology , Mice , Receptors, Fc/immunology
14.
Circulation ; 139(1): 78-96, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30586693

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) increases cardiovascular risk. Underlying mechanisms, however, remain obscure. The uremic toxin indoxyl sulfate is an independent cardiovascular risk factor in CKD. We explored the potential impact of indoxyl sulfate on proinflammatory activation of macrophages and its underlying mechanisms. METHODS: We examined in vitro the effects of clinically relevant concentrations of indoxyl sulfate on proinflammatory responses of macrophages and the roles of organic anion transporters and organic anion transporting polypeptides (OATPs). A systems approach, involving unbiased global proteomics, bioinformatics, and network analysis, then explored potential key pathways. To address the role of Delta-like 4 (Dll4) in indoxyl sulfate-induced macrophage activation and atherogenesis in CKD in vivo, we used 5/6 nephrectomy and Dll4 antibody in low-density lipoprotein receptor-deficient (Ldlr-/-) mice. To further determine the relative contribution of OATP2B1 or Dll4 to proinflammatory activation of macrophages and atherogenesis in vivo, we used siRNA delivered by macrophage-targeted lipid nanoparticles in mice. RESULTS: We found that indoxyl sulfate-induced proinflammatory macrophage activation is mediated by its uptake through transporters, including OATP2B1, encoded by the SLCO2B1 gene. The global proteomics identified potential mechanisms, including Notch signaling and the ubiquitin-proteasome pathway, that mediate indoxyl sulfate-triggered proinflammatory macrophage activation. We chose the Notch pathway as an example of key candidates for validation of our target discovery platform and for further mechanistic studies. As predicted computationally, indoxyl sulfate triggered Notch signaling, which was preceded by the rapid induction of Dll4 protein. Dll4 induction may result from inhibition of the ubiquitin-proteasome pathway, via the deubiquitinating enzyme USP5. In mice, macrophage-targeted OATP2B1/Slco2b1 silencing and Dll4 antibody inhibited proinflammatory activation of peritoneal macrophages induced by indoxyl sulfate. In low-density lipoprotein receptor-deficient mice, Dll4 antibody abolished atherosclerotic lesion development accelerated in Ldlr-/- mice. Moreover, coadministration of indoxyl sulfate and OATP2B1/Slco2b1 or Dll4 siRNA encapsulated in macrophage-targeted lipid nanoparticles in Ldlr-/- mice suppressed lesion development. CONCLUSIONS: These results suggest that novel crosstalk between OATP2B1 and Dll4-Notch signaling in macrophages mediates indoxyl sulfate-induced vascular inflammation in CKD.


Subject(s)
Atherosclerosis/metabolism , Indican/toxicity , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Macrophage Activation/drug effects , Macrophages/drug effects , Membrane Proteins/metabolism , Organic Anion Transporters/metabolism , Receptors, Notch/metabolism , Renal Insufficiency, Chronic/metabolism , Adaptor Proteins, Signal Transducing , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/prevention & control , Calcium-Binding Proteins , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Macrophages/metabolism , Macrophages/pathology , Male , Membrane Proteins/genetics , Mice , Mice, Knockout , Organic Anion Transporters/genetics , Phenotype , Plaque, Atherosclerotic , RAW 264.7 Cells , Receptors, LDL/deficiency , Receptors, LDL/genetics , Receptors, Notch/genetics , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Signal Transduction/drug effects , Vascular Calcification/metabolism , Vascular Calcification/pathology
15.
Mod Pathol ; 33(6): 1135-1145, 2020 06.
Article in English | MEDLINE | ID: mdl-31896808

ABSTRACT

Greater than 90% of cases of systemic mastocytosis (SM) harbor pathogenic KIT mutations, particularly KITD816V. Prognostically-significant pathogenic KIT mutations also occur in 30-40% of core binding factor-associated acute myeloid leukemia (CBF-AML), but are uncommonly associated with concurrent SM. By comparison, the occurrence of SM in other myeloid neoplasms bearing pathogenic KIT mutations, particularly those with a chronic course, is poorly understood. Review of clinical next-generation sequencing (NGS) performed at our institutions in patients with known or suspected hematologic malignancies over an 8-year period revealed 64 patients with both a pathogenic KIT mutation detected at one or more timepoints and available bone marrow biopsy materials. Patients with KITD816V-mutated myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), or overlap MDS/MPN (n = 22) accounted for approximately one-third of our cohort (34%). Comprehensive morphologic and immunophenotypic characterization revealed that nearly all cases (n = 20, 91%) exhibited concurrent SM. In contrast, of the 18 patients (28%) with AML and KITD816V, only eight (44%) showed evidence of SM at any point in their disease course (p = 0.0021); of these eight, the AML component was characterized as AML with myelodysplasia-related changes (AML-MRC) in all but one instance (n = 7, 87%). Twelve patients (19%) had pathogenic KIT mutations other than p.D816V, all in the setting of AML (CFB-AML, n = 7; AML, not otherwise specified, n = 2; AML-MRC, n = 1; acute promyelocytic leukemia, n = 1); only two of these patients (17%), both with CBF-AML, exhibited concurrent SM. The remaining 12 patients (19%) had SM without evidence of an associated hematological neoplasm (AHN). For nearly one-third of the 30 SM-AHN patients in our cohort (n = 9, 30%), the SM component of their disease was not initially clinicopathologically recognized. We propose that identification of the KITD816V mutation in patients diagnosed with MDS, MPN, MDS/MPN, or AML-MRC should trigger reflex testing for SM.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Mastocytosis/genetics , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/genetics , Proto-Oncogene Proteins c-kit/genetics , DNA Mutational Analysis , Humans , Leukemia, Myeloid, Acute/pathology , Mastocytosis/pathology , Mutation , Myelodysplastic Syndromes/pathology , Myeloproliferative Disorders/pathology
16.
Blood ; 132(9): 935-947, 2018 08 30.
Article in English | MEDLINE | ID: mdl-29769264

ABSTRACT

Patients with angioimmunoblastic T-cell lymphoma (AITL) and other peripheral T-cell lymphomas that harbor features of follicular helper T (TFH) cells have a very poor prognosis. These lymphomas commonly present with paraneoplastic autoimmunity and lymphopenia. RhoA G17V mutation is present in 60% of TFH-like lymphomas, but its role in tumorigenesis is poorly understood. We generated transgenic mice that express RhoA G17V under the control of murine CD4 regulatory elements at levels comparable to a heterozygous mutation (tgRhoA mice). These mice had markedly reduced naive T cells but relatively increased TFH-cell populations. Surprisingly, naive CD4 T cells expressing RhoA G17V were hyperreactive to T-cell receptor stimulation. All tgRhoA mice developed autoimmunity that included a cellular infiltrate within ears and tails that was recapitulated in wild-type (WT) recipients after bone marrow transplantation. Older tgRhoA mice developed elevated serum titers of anti-double-stranded DNA antibodies and renal immune complex deposition. RhoA G17V mice crossed with Tet2fl/fl; Vav-Cre+ mice, which delete Tet2 throughout the hematopoietic compartment, developed T-cell lymphomas that retained histologic and immunophenotypic features of AITL and had transcriptional signatures enriched for mechanistic target of rapamycin (mTOR)-associated genes. Transplanted tumors were responsive to the mTOR inhibitor everolimus, providing a possible strategy for targeting RhoA G17V. Taken together, these data indicate that RhoA G17V contributes to both neoplastic and paraneoplastic phenotypes similar to those observed in patients with TFH lymphomas.


Subject(s)
Lymphoma, T-Cell , Mutation, Missense , Neoplasm Proteins , T-Lymphocytes, Helper-Inducer , rho GTP-Binding Proteins , Amino Acid Substitution , Animals , Antibodies, Antinuclear/immunology , Autoimmune Diseases , Lymphoma, Follicular/genetics , Lymphoma, Follicular/immunology , Lymphoma, Follicular/pathology , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/immunology , Lymphoma, T-Cell/pathology , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/pathology , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/immunology , rhoA GTP-Binding Protein
17.
Blood ; 132(14): 1495-1506, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30089630

ABSTRACT

Chimeric antigen receptor (CAR) T cells have emerged as a novel form of treatment of patients with B-cell malignancies. In particular, anti-CD19 CAR T-cell therapy has effected impressive clinical responses in B-cell acute lymphoblastic leukemia and diffuse large B-cell lymphoma. However, not all patients respond, and relapse with antigen loss has been observed in all patient subsets. Here, we report on the design and optimization of a novel CAR directed to the surface antigen CD37, which is expressed in B-cell non-Hodgkin lymphomas, in chronic lymphocytic leukemia, and in some cases of cutaneous and peripheral T-cell lymphomas. We found that CAR-37 T cells demonstrated antigen-specific activation, cytokine production, and cytotoxic activity in models of B- and T-cell lymphomas in vitro and in vivo, including patient-derived xenografts. Taken together, these results are the first showing that T cells expressing anti-CD37 CAR have substantial activity against 2 different lymphoid lineages, without evidence of significant T-cell fratricide. Furthermore, anti-CD37 CARs were readily combined with anti-CD19 CARs to generate dual-specific CAR T cells capable of recognizing CD19 and CD37 alone or in combination. Our findings indicate that CD37-CAR T cells represent a novel therapeutic agent for the treatment of patients with CD37-expressing lymphoid malignancies.


Subject(s)
Antigens, Neoplasm/immunology , Immunotherapy, Adoptive/methods , Lymphoma, B-Cell/therapy , Lymphoma, T-Cell/therapy , Tetraspanins/immunology , Animals , Antigens, Neoplasm/analysis , Cell Line, Tumor , Humans , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/pathology , Lymphoma, T-Cell/immunology , Lymphoma, T-Cell/pathology , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/therapeutic use , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Tetraspanins/analysis , Tetraspanins/antagonists & inhibitors
18.
Blood ; 131(8): 888-898, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29233821

ABSTRACT

Duvelisib (IPI-145) is an oral inhibitor of phosphatidylinositol 3-kinase (PI3K)-δ/γ isoforms currently in clinical development. PI3K-δ/γ inhibition may directly inhibit malignant T-cell growth, making duvelisib a promising candidate for patients with peripheral (PTCL) or cutaneous (CTCL) T-cell lymphoma. Inhibition of either isoform may also contribute to clinical responses by modulating nonmalignant immune cells. We investigated these dual effects in a TCL cohort from a phase 1, open-label study of duvelisib in patients with relapsed or refractory PTCL (n = 16) and CTCL (n = 19), along with in vitro and in vivo models of TCL. The overall response rates in patients with PTCL and CTCL were 50.0% and 31.6%, respectively (P = .32). There were 3 complete responses, all among patients with PTCL. Activity was seen across a wide spectrum of subtypes. The most frequently observed grade 3 and 4 adverse events were transaminase increases (40% alanine aminotransferase, 17% aspartate aminotransferase), maculopapular rash (17%), and neutropenia (17%). Responders and nonresponders had markedly different changes in serum cytokine profiles induced by duvelisib. In vitro, duvelisib potently killed 3 of 4 TCL lines with constitutive phospho-AKT (pAKT) vs 0 of 7 lines lacking pAKT (P = .024) and exceeded cell killing by the PI3K-δ-specific inhibitor idelalisib. Administration of duvelisib to mice engrafted with a PTCL patient-derived xenograft resulted in a shift among tumor-associated macrophages from the immunosuppressive M2-like phenotype to the inflammatory M1-like phenotype. In summary, duvelisib demonstrated promising clinical activity and an acceptable safety profile in relapsed/refractory TCL, as well as preclinical evidence of both tumor cell-autonomous and immune-mediated effects. This trial was registered at www.clinicaltrials.gov as #NCT01476657.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Isoquinolines/administration & dosage , Isoquinolines/pharmacokinetics , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Peripheral/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Purines/administration & dosage , Purines/pharmacokinetics , Skin Neoplasms/drug therapy , Administration, Oral , Adult , Aged , Aged, 80 and over , Class Ib Phosphatidylinositol 3-Kinase , Female , Humans , Isoquinolines/pharmacology , Lymphoma, T-Cell, Cutaneous/enzymology , Lymphoma, T-Cell, Cutaneous/pathology , Lymphoma, T-Cell, Peripheral/enzymology , Lymphoma, T-Cell, Peripheral/pathology , Male , Maximum Tolerated Dose , Middle Aged , Prognosis , Purines/pharmacology , Safety , Skin Neoplasms/enzymology , Skin Neoplasms/pathology , Tissue Distribution
19.
Nature ; 513(7519): 512-6, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25043004

ABSTRACT

Mutations that deregulate Notch1 and Ras/phosphoinositide 3 kinase (PI3K)/Akt signalling are prevalent in T-cell acute lymphoblastic leukaemia (T-ALL), and often coexist. Here we show that the PI3K inhibitor GDC-0941 is active against primary T-ALLs from wild-type and Kras(G12D) mice, and addition of the MEK inhibitor PD0325901 increases its efficacy. Mice invariably relapsed after treatment with drug-resistant clones, most of which unexpectedly had reduced levels of activated Notch1 protein, downregulated many Notch1 target genes, and exhibited cross-resistance to γ-secretase inhibitors. Multiple resistant primary T-ALLs that emerged in vivo did not contain somatic Notch1 mutations present in the parental leukaemia. Importantly, resistant clones upregulated PI3K signalling. Consistent with these data, inhibiting Notch1 activated the PI3K pathway, providing a likely mechanism for selection against oncogenic Notch1 signalling. These studies validate PI3K as a therapeutic target in T-ALL and raise the unexpected possibility that dual inhibition of PI3K and Notch1 signalling could promote drug resistance in T-ALL.


Subject(s)
Drug Resistance, Neoplasm , Indazoles/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Kinase Inhibitors/pharmacology , Receptor, Notch1/metabolism , Sulfonamides/pharmacology , Animals , Benzamides/pharmacology , Benzamides/therapeutic use , Clone Cells/drug effects , Clone Cells/metabolism , Clone Cells/pathology , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Diphenylamine/therapeutic use , Down-Regulation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Genes, ras/genetics , Indazoles/therapeutic use , Male , Mice , Mice, Inbred C57BL , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/therapeutic use , Protein Structure, Tertiary , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Notch1/chemistry , Receptor, Notch1/deficiency , Receptor, Notch1/genetics , Signal Transduction/drug effects , Sulfonamides/therapeutic use
20.
Trans Am Clin Climatol Assoc ; 131: 147-156, 2020.
Article in English | MEDLINE | ID: mdl-32675855

ABSTRACT

Notch receptors participate is a highly conserved signaling pathway that regulates numerous facets of cellular behavior, has protean roles during development and in adult tissue homeostasis, and is frequently dysregulated in human diseases, particularly cancer. These relationships to disease and the ability to modulate Notch signaling at multiple levels have engendered attempts to target Notch therapeutically, but incomplete understanding of the outcomes of Notch activation and on-target toxicity have stymied efforts to date. Using well-controlled experimental systems, we have pursued studies that seek to understand how Notch influences the behavior of different types of cancer cells. Our work suggests that Notch effects are defined by epigenetic landscapes that are "laid out" by upstream pioneer transcription factors, which act to delineate the outcome of Notch activation. These insights define some of the "rules" that govern Notch functions and constitute one step toward bringing safe and effective targeting of Notch to fruition.

SELECTION OF CITATIONS
SEARCH DETAIL