ABSTRACT
BACKGROUND: The sensitivity of amyloid to pre-analytic factors complicates cerebrospinal fluid (CSF) diagnostics for Alzheimer disease. We report reliability and validity evidence for automated immunoassays from frozen and fresh CSF samples in an ongoing, single-site research program. METHODS: CSF samples were obtained from 2 Wisconsin cohorts (1256 measurements; 727 participants). Levels of amyloid beta 1-42 (Aß42), phosphorylated tau 181 (pTau181), and total tau (tTau) were obtained using an Elecsys cobas e 601 platform. Repeatability and fixed effects of storage tube type, extraction method, and freezing were assessed via mixed models. Concordance with amyloid positron emission tomography (PET) was investigated with 238 participants having a temporally proximal PET scan. RESULTS: Repeatability was high with intraclass correlation (ICC) ≥0.9, but tube type strongly affected measurements. Discriminative accuracy for PET amyloid positivity was strong across tube types (area under the curve [AUC]: Aß42, 0.87; pTau181Aß42 , 0.96), although optimal thresholds differed. CONCLUSIONS: Under real-world conditions, the Elecsys platform had high repeatability. However, strong effects of pre-analytic factors suggest caution in drawing longitudinal inferences.
Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Reproducibility of Results , tau Proteins/cerebrospinal fluid , Positron-Emission Tomography , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluidABSTRACT
INTRODUCTION: DNA microarray-based studies report differentially methylated positions (DMPs) in blood between late-onset dementia due to Alzheimer's disease (AD) and cognitively unimpaired individuals, but interrogate < 4% of the genome. METHODS: We used whole genome methylation sequencing (WGMS) to quantify DNA methylation levels at 25,409,826 CpG loci in 281 blood samples from 108 AD and 173 cognitively unimpaired individuals. RESULTS: WGMS identified 28,038 DMPs throughout the human methylome, including 2707 differentially methylated genes (e.g., SORCS3, GABA, and PICALM) encoding proteins in biological pathways relevant to AD such as synaptic membrane, cation channel complex, and glutamatergic synapse. One hundred seventy-three differentially methylated blood-specific enhancers interact with the promoters of 95 genes that are differentially expressed in blood from persons with and without AD. DISCUSSION: WGMS identifies differentially methylated CpGs in known and newly detected genes and enhancers in blood from persons with and without AD. HIGHLIGHTS: Whole genome DNA methylation levels were quantified in blood from persons with and without Alzheimer's disease (AD). Twenty-eight thousand thirty-eight differentially methylated positions (DMPs) were identified. Two thousand seven hundred seven genes comprise DMPs. Forty-eight of 75 independent genetic risk loci for AD have DMPs. One thousand five hundred sixty-eight blood-specific enhancers comprise DMPs, 173 of which interact with the promoters of 95 genes that are differentially expressed in blood from persons with and without AD.
Subject(s)
Alzheimer Disease , DNA Methylation , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Epigenesis, Genetic , Whole Genome SequencingABSTRACT
INTRODUCTION: Recent genome-wide association studies (GWAS) have reported a genetic association with Alzheimer's disease (AD) at the TNIP1/GPX3 locus, but the mechanism is unclear. METHODS: We used cerebrospinal fluid (CSF) proteomics data to test (n = 137) and replicate (n = 446) the association of glutathione peroxidase 3 (GPX3) with CSF biomarkers (including amyloid and tau) and the GWAS-implicated variants (rs34294852 and rs871269). RESULTS: CSF GPX3 levels decreased with amyloid and tau positivity (analysis of variance P = 1.5 × 10-5) and higher CSF phosphorylated tau (p-tau) levels (P = 9.28 × 10-7). The rs34294852 minor allele was associated with decreased GPX3 (P = 0.041). The replication cohort found associations of GPX3 with amyloid and tau positivity (P = 2.56 × 10-6) and CSF p-tau levels (P = 4.38 × 10-9). DISCUSSION: These results suggest variants in the TNIP1 locus may affect the oxidative stress response in AD via altered GPX3 levels. HIGHLIGHTS: Cerebrospinal fluid (CSF) glutathione peroxidase 3 (GPX3) levels decreased with amyloid and tau positivity and higher CSF phosphorylated tau. The minor allele of rs34294852 was associated with lower CSF GPX3. levels when also controlling for amyloid and tau category. GPX3 transcript levels in the prefrontal cortex were lower in Alzheimer's disease than controls. rs34294852 is an expression quantitative trait locus for GPX3 in blood, neutrophils, and microglia.
Subject(s)
Alzheimer Disease , Genome-Wide Association Study , Glutathione Peroxidase , tau Proteins , Aged , Aged, 80 and over , Female , Humans , Male , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , DNA-Binding Proteins/genetics , Glutathione Peroxidase/genetics , Glutathione Peroxidase/cerebrospinal fluid , Polymorphism, Single Nucleotide/genetics , Proteomics , tau Proteins/cerebrospinal fluid , tau Proteins/geneticsABSTRACT
INTRODUCTION: Published norms are typically cross-sectional and often are not sensitive to preclinical cognitive changes due to dementia. We developed and validated demographically adjusted cross-sectional and longitudinal normative standards using harmonized outcomes from two Alzheimer's disease (AD) risk-enriched cohorts. METHODS: Data from the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center were combined. Quantile regression was used to develop unconditional (cross-sectional) and conditional (longitudinal) normative standards for 18 outcomes using data from cognitively unimpaired participants (N = 1390; mean follow-up = 9.25 years). Validity analyses (N = 2456) examined relationships between percentile scores (centiles), consensus-based cognitive statuses, and AD biomarker levels. RESULTS: Unconditional and conditional centiles were lower in those with consensus-based impairment or biomarker positivity. Similarly, quantitative biomarker levels were higher in those whose centiles suggested decline. DISCUSSION: This study presents normative standards for cognitive measures sensitive to pre-clinical changes. Future directions will investigate potential clinical applications of longitudinal normative standards. HIGHLIGHTS: Quantile regression was used to construct longitudinal norms for cognitive tests. Poorer percentile scores were related to concurrent diagnosis and Alzheimer's disease biomarkers. A ShinyApp was built to display test scores and norms and flag low performance.
Subject(s)
Alzheimer Disease , Biomarkers , Neuropsychological Tests , Humans , Alzheimer Disease/diagnosis , Male , Aged , Female , Neuropsychological Tests/standards , Neuropsychological Tests/statistics & numerical data , Longitudinal Studies , Wisconsin , Cross-Sectional Studies , Cognitive Dysfunction/diagnosis , Cohort Studies , Cognition/physiology , Aged, 80 and over , Middle AgedABSTRACT
INTRODUCTION: We examined whether the aging suppressor KLOTHO gene's functionally advantageous KL-VS variant (KL-VS heterozygosity [KL-VSHET]) confers resilience against deleterious effects of aging indexed by cerebrospinal fluid (CSF) biomarkers of neuroinflammation (interleukin-6 [IL-6], S100 calcium-binding protein B [S100B], triggering receptor expressed on myeloid cells [sTREM2], chitinase-3-like protein 1 [YKL-40], glial fibrillary acidic protein [GFAP]), neurodegeneration (total α-synuclein [α-Syn], neurofilament light chain protein), and synaptic dysfunction (neurogranin [Ng]). METHODS: This Alzheimer disease risk-enriched cohort consisted of 454 cognitively unimpaired adults (Mage = 61.5 ± 7.75). Covariate-adjusted multivariate regression examined relationships between age (mean-split[age ≥ 62]) and CSF biomarkers (Roche/NeuroToolKit), and whether they differed between KL-VSHET (N = 122) and non-carriers (KL-VSNC; N = 332). RESULTS: Older age was associated with a poorer biomarker profile across all analytes (Ps ≤ 0.03). In age-stratified analyses, KL-VSNC exhibited this same pattern (Ps ≤ 0.05) which was not significant for IL-6, S100B, Ng, and α-Syn (Ps ≥ 0.13) in KL-VSHET. Although age-related differences in GFAP, sTREM2, and YKL-40 were evident for both groups (Ps ≤ 0.01), the effect magnitude was markedly stronger for KL-VSNC. DISCUSSION: Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults were attenuated in KL-VSHET. HIGHLIGHTS: Older age was associated with poorer profiles across all cerebrospinal fluid biomarkers of neuroinflammation, neurodegeneration, and synaptic dysfunction. KLOTHO KL-VS non-carriers exhibit this same pattern, which is does not significantly differ between younger and older KL-VS heterozygotes for interleukin-6, S100 calcium-binding protein B, neurogranin, and total α-synuclein. Although age-related differences in glial fibrillary acidic protein, triggering receptor expressed on myeloid cells, and chitinase-3-like protein 1 are evident for both KL-VS groups, the magnitude of the effect is markedly stronger for KL-VS non-carriers. Higher levels of neuroinflammation, neurodegeneration, and synaptic dysfunction in older adults are attenuated in KL-VS heterozygotes.
Subject(s)
Aging , Biomarkers , Chitinase-3-Like Protein 1 , Heterozygote , Klotho Proteins , Humans , Female , Male , Middle Aged , Biomarkers/cerebrospinal fluid , Aged , Aging/genetics , Chitinase-3-Like Protein 1/cerebrospinal fluid , Chitinase-3-Like Protein 1/genetics , Glucuronidase/genetics , Glucuronidase/cerebrospinal fluid , Interleukin-6/cerebrospinal fluid , Interleukin-6/genetics , Receptors, Immunologic/genetics , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/cerebrospinal fluid , S100 Calcium Binding Protein beta Subunit/cerebrospinal fluid , S100 Calcium Binding Protein beta Subunit/genetics , Cohort Studies , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Glial Fibrillary Acidic Protein/genetics , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/genetics , alpha-Synuclein/cerebrospinal fluid , alpha-Synuclein/genetics , Neurogranin/cerebrospinal fluid , Neurogranin/genetics , Membrane GlycoproteinsABSTRACT
Alzheimer's disease biomarkers are becoming increasingly important for characterizing the longitudinal course of disease, predicting the timing of clinical and cognitive symptoms, and for recruitment and treatment monitoring in clinical trials. In this work, we develop and evaluate three methods for modelling the longitudinal course of amyloid accumulation in three cohorts using amyloid PET imaging. We then use these novel approaches to investigate factors that influence the timing of amyloid onset and the timing from amyloid onset to impairment onset in the Alzheimer's disease continuum. Data were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the Baltimore Longitudinal Study of Aging (BLSA) and the Wisconsin Registry for Alzheimer's Prevention (WRAP). Amyloid PET was used to assess global amyloid burden. Three methods were evaluated for modelling amyloid accumulation using 10-fold cross-validation and holdout validation where applicable. Estimated amyloid onset age was compared across all three modelling methods and cohorts. Cox regression and accelerated failure time models were used to investigate whether sex, apolipoprotein E genotype and e4 carriage were associated with amyloid onset age in all cohorts. Cox regression was used to investigate whether apolipoprotein E (e4 carriage and e3e3, e3e4, e4e4 genotypes), sex or age of amyloid onset were associated with the time from amyloid onset to impairment onset (global clinical dementia rating ≥1) in a subset of 595 ADNI participants that were not impaired before amyloid onset. Model prediction and estimated amyloid onset age were similar across all three amyloid modelling methods. Sex and apolipoprotein E e4 carriage were not associated with PET-measured amyloid accumulation rates. Apolipoprotein E genotype and e4 carriage, but not sex, were associated with amyloid onset age such that e4 carriers became amyloid positive at an earlier age compared to non-carriers, and greater e4 dosage was associated with an earlier amyloid onset age. In the ADNI, e4 carriage, being female and a later amyloid onset age were all associated with a shorter time from amyloid onset to impairment onset. The risk of impairment onset due to age of amyloid onset was non-linear and accelerated for amyloid onset age >65. These findings demonstrate the feasibility of modelling longitudinal amyloid accumulation to enable individualized estimates of amyloid onset age from amyloid PET imaging. These estimates provide a more direct way to investigate the role of amyloid and other factors that influence the timing of clinical impairment in Alzheimer's disease.
Subject(s)
Alzheimer Disease , Amyloidosis , Cognitive Dysfunction , Female , Humans , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/genetics , Longitudinal Studies , Apolipoprotein E4/genetics , Amyloid , Positron-Emission Tomography/methods , Amyloidogenic Proteins , Amyloid beta-PeptidesABSTRACT
As the body fluid that directly interchanges with the extracellular fluid of the central nervous system (CNS), cerebrospinal fluid (CSF) serves as a rich source for CNS-related disease biomarker discovery. Extensive proteome profiling has been conducted for CSF, but studies aimed at unraveling site-specific CSF N-glycoproteome are lacking. Initial efforts into site-specific N-glycoproteomics study in CSF yield limited coverage, hindering further experimental design of glycosylation-based disease biomarker discovery in CSF. In the present study, we have developed an N-glycoproteomic approach that combines enhanced N-glycopeptide sequential enrichment by hydrophilic interaction chromatography (HILIC) and boronic acid enrichment with electron transfer and higher-energy collision dissociation (EThcD) for large-scale intact N-glycopeptide analysis. The application of the developed approach to the analyses of human CSF samples enabled identifications of a total of 2893 intact N-glycopeptides from 511 N-glycosites and 285 N-glycoproteins. To our knowledge, this is the largest site-specific N-glycoproteome dataset reported for CSF to date. Such dataset provides molecular basis for a better understanding of the structure-function relationships of glycoproteins and their roles in CNS-related physiological and pathological processes. As accumulating evidence suggests that defects in glycosylation are involved in Alzheimer's disease (AD) pathogenesis, in the present study, a comparative in-depth N-glycoproteomic analysis was conducted for CSF samples from healthy control and AD patients, which yielded a comparable N-glycoproteome coverage but a distinct expression pattern for different categories of glycoforms, such as decreased fucosylation in AD CSF samples. Altered glycosylation patterns were detected for a number of N-glycoproteins including alpha-1-antichymotrypsin, ephrin-A3 and carnosinase CN1 etc., which serve as potentially interesting targets for further glycosylation-based AD study and may eventually lead to molecular elucidation of the role of glycosylation in AD progression.
Subject(s)
Alzheimer Disease/cerebrospinal fluid , Glycopeptides/cerebrospinal fluid , Glycoproteins/cerebrospinal fluid , Proteome/analysis , Cell Line , Glycosylation , HumansABSTRACT
INTRODUCTION: Apolipoprotein E (APOE) ε4-carrier status or ε4 allele count are included in analyses to account for the APOE genetic effect on Alzheimer's disease (AD); however, this does not account for protective effects of APOE ε2 or heterogeneous effect of ε2, ε3, and ε4 haplotypes. METHODS: We leveraged results from an autopsy-confirmed AD study to generate a weighted risk score for APOE (APOE-npscore). We regressed cerebrospinal fluid (CSF) amyloid and tau biomarkers on APOE variables from the Wisconsin Registry for Alzheimer's Prevention (WRAP), Wisconsin Alzheimer's Disease Research Center (WADRC), and Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS: The APOE-npscore explained more variance and provided a better model fit for all three CSF measures than APOE ε4-carrier status and ε4 allele count. These findings were replicated in ADNI and observed in subsets of cognitively unimpaired (CU) participants. DISCUSSION: The APOE-npscore reflects the genetic effect on neuropathology and provides an improved method to account for APOE in AD-related analyses.
Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Genotype , Risk Factors , tau Proteins/genetics , tau Proteins/cerebrospinal fluidABSTRACT
INTRODUCTION: A hallmark of Alzheimer's disease (AD) is the aggregation of proteins (amyloid beta [A] and hyperphosphorylated tau [T]) in the brain, making cerebrospinal fluid (CSF) proteins of particular interest. METHODS: We conducted a CSF proteome-wide analysis among participants of varying AT pathology (n = 137 participants; 915 proteins) with nine CSF biomarkers of neurodegeneration and neuroinflammation. RESULTS: We identified 61 proteins significantly associated with the AT category (P < 5.46 × 10-5 ) and 636 significant protein-biomarker associations (P < 6.07 × 10-6 ). Proteins from glucose and carbon metabolism pathways were enriched among amyloid- and tau-associated proteins, including malate dehydrogenase and aldolase A, whose associations with tau were replicated in an independent cohort (n = 717). CSF metabolomics identified and replicated an association of succinylcarnitine with phosphorylated tau and other biomarkers. DISCUSSION: These results implicate glucose and carbon metabolic dysregulation and increased CSF succinylcarnitine levels with amyloid and tau pathology in AD. HIGHLIGHTS: Cerebrospinal fluid (CSF) proteome enriched for extracellular, neuronal, immune, and protein processing. Glucose/carbon metabolic pathways enriched among amyloid/tau-associated proteins. Key glucose/carbon metabolism protein associations independently replicated. CSF proteome outperformed other omics data in predicting amyloid/tau positivity. CSF metabolomics identified and replicated a succinylcarnitine-phosphorylated tau association.
Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Proteome , tau Proteins/cerebrospinal fluid , Amyloid/metabolism , Biomarkers/cerebrospinal fluid , Metabolome , Peptide Fragments/cerebrospinal fluidABSTRACT
INTRODUCTION: Neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion-weighted imaging (DWI) model, may be useful for detecting early cortical microstructural alterations in Alzheimer's disease prior to cognitive impairment. METHODS: Using neuroimaging (NODDI and T1-weighted magnetic resonance imaging [MRI]) and cerebrospinal fluid (CSF) biomarker data (measured using Elecsys® CSF immunoassays) from 219 cognitively unimpaired participants, we tested the main and interactive effects of CSF amyloid beta (Aß)42 /Aß40 and phosphorylated tau (p-tau) on cortical NODDI metrics and cortical thickness, controlling for age, sex, and apolipoprotein E ε4. RESULTS: We observed a significant CSF Aß42 /Aß40 × p-tau interaction on cortical neurite density index (NDI), but not orientation dispersion index or cortical thickness. The directionality of these interactive effects indicated: (1) among individuals with lower CSF p-tau, greater amyloid burden was associated with higher cortical NDI; and (2) individuals with greater amyloid and p-tau burden had lower cortical NDI, consistent with cortical neurodegenerative changes. DISCUSSION: NDI is a particularly sensitive marker for early cortical changes that occur prior to gross atrophy or development of cognitive impairment.
Subject(s)
Amyloid/cerebrospinal fluid , Cerebral Cortex , Healthy Volunteers/statistics & numerical data , Neurites/physiology , Prodromal Symptoms , tau Proteins/cerebrospinal fluid , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoprotein E4/genetics , Biomarkers/cerebrospinal fluid , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Diffusion Magnetic Resonance Imaging , Female , Humans , Male , Middle Aged , Peptide Fragments/cerebrospinal fluidABSTRACT
OBJECTIVE: This study investigated the latent factor structure of the NIH Toolbox Cognition Battery (NIHTB-CB) and its measurement invariance across clinical diagnosis and key demographic variables including sex, race/ethnicity, age, and education for a typical Alzheimer's disease (AD) research sample. METHOD: The NIHTB-CB iPad English version, consisting of 7 tests, was administered to 411 participants aged 45-94 with clinical diagnosis of cognitively unimpaired, dementia, mild cognitive impairment (MCI), or impaired not MCI. The factor structure of the whole sample was first examined with exploratory factor analysis (EFA) and further refined using confirmatory factor analysis (CFA). Two groups were classified for each variable (diagnosis or demographic factors). The confirmed factor model was next tested for each group with CFA. If the factor structure was the same between the groups, measurement invariance was then tested using a hierarchical series of nested two-group CFA models. RESULTS: A two-factor model capturing fluid cognition (executive function, processing speed, and memory) versus crystalized cognition (language) fit well for the whole sample and each group except for those with age < 65. This model generally had measurement invariance across sex, race/ethnicity, and education, and partial invariance across diagnosis. For individuals with age < 65, the language factor remained intact while the fluid cognition was separated into two factors: (1) executive function/processing speed and (2) memory. CONCLUSIONS: The findings mostly supported the utility of the battery in AD research, yet revealed challenges in measuring memory for AD participants and longitudinal change in fluid cognition.
Subject(s)
Alzheimer Disease , Alzheimer Disease/complications , Alzheimer Disease/diagnosis , Cognition , Executive Function , Factor Analysis, Statistical , Humans , Neuropsychological TestsABSTRACT
This study investigated differences in retrospective cognitive trajectories between amyloid and tau PET biomarker stratified groups in initially cognitively unimpaired participants sampled from the Wisconsin Registry for Alzheimer's Prevention. One hundred and sixty-seven initially unimpaired individuals (baseline age 59 ± 6 years; 115 females) were stratified by elevated amyloid-ß and tau status based on 11C-Pittsburgh compound B (PiB) and 18F-MK-6240 PET imaging. Mixed effects models were used to determine if longitudinal cognitive trajectories based on a composite of cognitive tests including memory and executive function differed between biomarker groups. Secondary analyses investigated group differences for a variety of cross-sectional health and cognitive tests, and associations between 18F-MK-6240, 11C-PiB, and age. A significant group × age interaction was observed with post hoc comparisons indicating that the group with both elevated amyloid and tau pathophysiology were declining approximately three times faster in retrospective cognition compared to those with just one or no elevated biomarkers. This result was robust against various thresholds and medial temporal lobe regions defining elevated tau. Participants were relatively healthy and mostly did not differ between biomarker groups in health factors at the beginning or end of study, or most cognitive measures at study entry. Analyses investigating association between age, MK-6240 and PiB indicated weak associations between age and 18F-MK-6240 in tangle-associated regions, which were negligible after adjusting for 11C-PiB. Strong associations, particularly in entorhinal cortex, hippocampus and amygdala, were observed between 18F-MK-6240 and global 11C-PiB in regions associated with Braak neurofibrillary tangle stages I-VI. These results suggest that the combination of pathological amyloid and tau is detrimental to cognitive decline in preclinical Alzheimer's disease during late middle-age. Within the Alzheimer's disease continuum, middle-age health factors likely do not greatly influence preclinical cognitive decline. Future studies in a larger preclinical sample are needed to determine if and to what extent individual contributions of amyloid and tau affect cognitive decline. 18F-MK-6240 shows promise as a sensitive biomarker for detecting neurofibrillary tangles in preclinical Alzheimer's disease.
Subject(s)
Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Plaque, Amyloid/diagnostic imaging , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Amyloid beta-Peptides/metabolism , Aniline Compounds , Brain/metabolism , Carbon Radioisotopes , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Female , Fluorine Radioisotopes , Humans , Isoquinolines , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Neurofibrillary Tangles/metabolism , Neuropsychological Tests , Plaque, Amyloid/metabolism , Positron-Emission Tomography , Prodromal Symptoms , Thiazoles , tau Proteins/metabolismABSTRACT
In Alzheimer's disease (AD), neurodegenerative processes are ongoing for years prior to the time that cortical atrophy can be reliably detected using conventional neuroimaging techniques. Recent advances in diffusion-weighted imaging have provided new techniques to study neural microstructure, which may provide additional information regarding neurodegeneration. In this study, we used neurite orientation dispersion and density imaging (NODDI), a multi-compartment diffusion model, in order to investigate cortical microstructure along the clinical continuum of mild cognitive impairment (MCI) and AD dementia. Using gray matter-based spatial statistics (GBSS), we demonstrated that neurite density index (NDI) was significantly lower throughout temporal and parietal cortical regions in MCI, while both NDI and orientation dispersion index (ODI) were lower throughout parietal, temporal, and frontal regions in AD dementia. In follow-up ROI analyses comparing microstructure and cortical thickness (derived from T1-weighted MRI) within the same brain regions, differences in NODDI metrics remained, even after controlling for cortical thickness. Moreover, for participants with MCI, gray matter NDI-but not cortical thickness-was lower in temporal, parietal, and posterior cingulate regions. Taken together, our results highlight the utility of NODDI metrics in detecting cortical microstructural degeneration that occurs prior to measurable macrostructural changes and overt clinical dementia.
Subject(s)
Alzheimer Disease/diagnostic imaging , Brain Cortical Thickness , Cerebral Cortex/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Gray Matter/diagnostic imaging , Aged , Aged, 80 and over , Alzheimer Disease/psychology , Cognitive Dysfunction/psychology , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Middle AgedABSTRACT
INTRODUCTION: This study examines the utility of a multipanel of cerebrospinal fluid (CSF) biomarkers complementing Alzheimer's disease (AD) biomarkers in a clinical research sample. We compared biomarkers across groups defined by clinical diagnosis and pTau181 /Aß42 status (+/-) and explored their value in predicting cognition. METHODS: CSF biomarkers amyloid beta (Aß)42 , pTau181 , tTau, Aß40 , neurogranin, neurofilament light (NfL), α-synuclein, glial fibrillary acidic protein (GFAP), chitinase-3-like protein 1 (YKL-40), soluble triggering receptor expressed on myeloid cells 2 (sTREM2), S100 calcium binding protein B (S100B), and interleukin 6 (IL6), were measured with the NeuroToolKit (NTK) for 720 adults ages 40 to 93 years (mean age = 63.9 years, standard deviation [SD] = 9.0; 50 with dementia; 54 with mild cognitive impairment [MCI], 616 unimpaired). RESULTS: Neurodegeneration and glial activation biomarkers were elevated in pTau181 /Aß42 + MCI/dementia participants relative to all pTau181 /Aß42 - participants. Neurodegeneration biomarkers increased with clinical severity among pTau181 /Aß42 + participants and predicted worse cognitive performance. Glial activation biomarkers were unrelated to cognitive performance. DISCUSSION: The NTK contains promising markers that improve the pathophysiological characterization of AD. Neurodegeneration biomarkers beyond tTau improved statistical prediction of cognition and disease stages.
Subject(s)
Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Cognition/physiology , Cognitive Dysfunction/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Female , Humans , Male , Middle Aged , Neurofilament Proteins , alpha-Synuclein/cerebrospinal fluid , tau Proteins/cerebrospinal fluidABSTRACT
BACKGROUND: This study tested if central obesity, hypertension, or depressive symptoms moderated the relationship between ß-amyloid (Aß) and longitudinal cognitive performance in late middle-aged adults enriched for Alzheimer's disease (AD) risk. METHODS: Participants (n = 207; ages = 40-70 years; 73% parental AD) in the Wisconsin Registry for Alzheimer's Prevention study completed 3+ neuropsychological evaluations and a [11C]PiB positron emission tomography scan or lumbar puncture. Linear mixed-effects regression models tested interactions of risk factor × Aß × visit age on longitudinal Verbal Learning & Memory and Speed & Flexibility factor scores. RESULTS: The relationship between Aß and Verbal Learning & Memory decline was moderated by hypertension (χ2(1) = 3.85, P = .04) and obesity (χ2(1) = 6.12, P = .01); those with both elevated Aß and the risk factor declined at faster rates than those with only elevated Aß or elevated risk factors. CONCLUSION: In this cohort, hypertension and obesity moderated the relationship between Aß and cognitive decline.
Subject(s)
Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/metabolism , Hypertension/epidemiology , Obesity, Abdominal/epidemiology , Adult , Aged , Alzheimer Disease/epidemiology , Biomarkers/cerebrospinal fluid , Brain/diagnostic imaging , Brain/metabolism , Cognitive Dysfunction/diagnostic imaging , Depression/diagnostic imaging , Depression/epidemiology , Depression/metabolism , Disease Progression , Female , Humans , Hypertension/diagnostic imaging , Hypertension/metabolism , Longitudinal Studies , Male , Middle Aged , Obesity, Abdominal/diagnostic imaging , Obesity, Abdominal/metabolism , Positron-Emission Tomography , Risk Factors , WisconsinABSTRACT
INTRODUCTION: We examined the influence of enrollment factors demonstrated to differ by race on incident mild cognitive impairment and dementia using Alzheimer's Disease Center data. METHODS: Differences in rates of incident impairment between non-Latino Whites and Blacks (n = 12,242) were examined with age-at-progression survival models. Models included race, sex, education, source of recruitment, health factors, and family history of dementia. RESULTS: No significant race differences in progression were observed in cognitively unimpaired participants. In those with mild cognitive impairment at baseline, Whites evidenced greater risk for progression than Blacks. Enrollment factors, for example, referral source, were significantly related to progression. DISCUSSION: The finding that Blacks demonstrated lower rate of progression than Whites is contrary to the extant literature. Nested-regression analyses suggested that selection-related factors, differing by race, may account for these findings and influence our ability to accurately estimate risk for progression. It is potentially problematic to make racial comparisons using Alzheimer's Disease Center data sets.
Subject(s)
Black People/statistics & numerical data , Cognitive Dysfunction/epidemiology , Dementia/epidemiology , White People/statistics & numerical data , Aged , Disease Progression , Female , Humans , Male , Patient Selection , United States/epidemiologyABSTRACT
OBJECTIVES: To assess the prevalence of neuropsychiatric symptoms (NPS) in mild-to-moderate Alzheimer disease (AD) and their association with caregiver burden. METHODS: Secondary analyses of baseline data from the Trial of Vitamin E and Memantine in Alzheimer's Disease (TEAM-AD) (N=613). Neuropsychiatric Inventory were used to measure severity of NPS and caregiver activity survey to measure caregiver burden. RESULTS: A total of 87% of patients displayed at least 1 NPS; 70% displayed clinically meaningful NPS. The most common symptoms were apathy (47%), irritability (44%), agitation (42%), and depression (40%). Those with moderate AD had more severe NPS than those with mild AD ( P = .03). Neuropsychiatric symptoms were significantly associated with caregiver time after adjusting for age, education, cognitive function, and comorbidity ( P-value < .0001) with every point increase in NPS associated with a 10-minute increase in caregiver time. CONCLUSION: Neuropsychiatric symptoms were prevalent in both mild and moderate AD, even in patients receiving treatment with an acetylcholinesterase inhibitors, and were more severe in moderate AD and associated with greater caregiver time.
Subject(s)
Alzheimer Disease/complications , Caregivers/psychology , Neuropsychological Tests/standards , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Female , Humans , MaleABSTRACT
Xerostomia, or perceived mouth dryness, increases with advancing age, but its influence on swallowing effort is unknown. This study: (1) quantified relationships among age, perceived sense of swallowing effort, and ratings of perceived mouth dryness, and (2) examined changes in swallowing effort following application of a gel-based saliva substitute in healthy participants. This was a cross-sectional observational study and data were collected from attendees of a community healthy aging fair. Forty-two healthy participants (mean age = 65 years; 20 female) were enrolled. Each participant rated perceived effort with swallowing and perceived mouth dryness on a 10-cm horizontal, undifferentiated line. After participants applied a gel-based saliva substitute (Biotene® Oral Balance) to their tongue and oral mucosa, they rated perceived effort with swallowing again. Age was associated with greater perceived mouth dryness (r = 0.37, p < 0.03) but not with perceived swallowing effort (r = 0.16, p = 0.32). Perceived mouth dryness was associated with greater perceived swallowing effort (r = 0.62, p < 0.001). Perceived swallowing effort declined following application of the salivary substitute (mean difference = 9.39 mm, p < 0.002). Age was found to be a significant predictor of perceived mouth dryness (p < .02); and perceived mouth dryness was found to significantly predict perceived swallow effort (p < .001). Perceived mouth dryness increased with advancing age, but perceived swallowing effort did not. Regardless of age, participants with higher levels of perceived mouth dryness also reported more perceived effort with swallowing suggesting a role for adequate oral lubrication in this perception. Even in healthy participants, use of a gel-based saliva substitute lowered perceived swallowing effort.
Subject(s)
Deglutition/physiology , Saliva, Artificial/therapeutic use , Xerostomia/complications , Adult , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Perception , Pilot Projects , Saliva , Young AdultABSTRACT
OBJECTIVES: The purpose of this study was to investigate the longitudinal trajectory of self- and informant-subjective cognitive complaints (SCC), and to determine if SCC predict longitudinal changes in objective measures (OM) of cognitive function. METHODS: The study included healthy and cognitively normal late middle-aged adults enriched with a family history of AD who were evaluated at up to three visits over a 4-year period. At each visit (Visit 1-3), self- and informant-SCC and OM were evaluated. Linear mixed models were used to determine if the longitudinal rate of change of self- and informant-SCC were associated with demographic variables, depressive symptoms, family history (FH), and apolipoprotein epsilon 4 (APOE4) status. The same modeling approach was used to examine the effect of Visit 1 SCC on longitudinal cognitive change after controlling for the same variables. RESULTS: At Visit 1, more self-SCC were associated with fewer years of education and more depressive symptoms. SCC were also associated with poorer performance on cognitive measures, such that more self-SCC at Visit 1 were associated with poorer performance on memory and executive functioning measures at Visit 1, while more informant-SCC were associated with faster rate of longitudinal decline on a measure of episodic learning and memory. FH and APOE4 status were not associated with SCC. DISCUSSION: Self- and informant-SCC showed an association with OM, albeit over different time frames in our late middle-aged sample. Additional longitudinal follow-up will likely assist in further clarifying these relationships as our sample ages and more pronounced cognitive changes eventually emerge. (JINS, 2017, 23, 617-626).
Subject(s)
Aging/physiology , Alzheimer Disease/diagnosis , Cognitive Dysfunction/diagnosis , Genetic Predisposition to Disease , Alzheimer Disease/genetics , Diagnostic Self Evaluation , Female , Humans , Longitudinal Studies , Male , Middle AgedABSTRACT
The ability to detect preclinical Alzheimer's disease is of great importance, as this stage of the Alzheimer's continuum is believed to provide a key window for intervention and prevention. As Alzheimer's disease is characterized by multiple pathological changes, a biomarker panel reflecting co-occurring pathology will likely be most useful for early detection. Towards this end, 175 late middle-aged participants (mean age 55.9 ± 5.7 years at first cognitive assessment, 70% female) were recruited from two longitudinally followed cohorts to undergo magnetic resonance imaging and lumbar puncture. Cluster analysis was used to group individuals based on biomarkers of amyloid pathology (cerebrospinal fluid amyloid-ß42/amyloid-ß40 assay levels), magnetic resonance imaging-derived measures of neurodegeneration/atrophy (cerebrospinal fluid-to-brain volume ratio, and hippocampal volume), neurofibrillary tangles (cerebrospinal fluid phosphorylated tau181 assay levels), and a brain-based marker of vascular risk (total white matter hyperintensity lesion volume). Four biomarker clusters emerged consistent with preclinical features of (i) Alzheimer's disease; (ii) mixed Alzheimer's disease and vascular aetiology; (iii) suspected non-Alzheimer's disease aetiology; and (iv) healthy ageing. Cognitive decline was then analysed between clusters using longitudinal assessments of episodic memory, semantic memory, executive function, and global cognitive function with linear mixed effects modelling. Cluster 1 exhibited a higher intercept and greater rates of decline on tests of episodic memory. Cluster 2 had a lower intercept on a test of semantic memory and both Cluster 2 and Cluster 3 had steeper rates of decline on a test of global cognition. Additional analyses on Cluster 3, which had the smallest hippocampal volume, suggest that its biomarker profile is more likely due to hippocampal vulnerability and not to detectable specific volume loss exceeding the rate of normal ageing. Our results demonstrate that pathology, as indicated by biomarkers, in a preclinical timeframe is related to patterns of longitudinal cognitive decline. Such biomarker patterns may be useful for identifying at-risk populations to recruit for clinical trials.