Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Wound Repair Regen ; 31(3): 338-348, 2023.
Article in English | MEDLINE | ID: mdl-36975171

ABSTRACT

Extra virgin olive oil (EVOO) has proved beneficial effects in skin wound healing of chronic lesions; however, the effects of EVOO in acute wounds are not completely understood. This study investigated the effects of short-term and long-term administration of a diet rich in EVOO on acute wound healing. To check this, mice were fed with a diet rich in EVOO for 1 week (short term), 1 month, or 3 months (long term). The control group received a standard diet. Mouse macrophages were treated in vitro with EVOO or hydroxytyrosol (HT), which is the main EVOO polyphenol. Short-term administration of an EVOO rich diet in vivo increased lipid peroxidation and mRNA levels of pro-inflammatory cytokine levels and impaired acute wound closure. In contrast, long-term administration of an EVOO rich diet resulted in increased mRNA levels of anti-inflammatory cytokines and enhanced acute wound closure. In both in vivo and in vitro assays, the administration of EVOO or HT resulted in a predominantly anti-inflammatory macrophage phenotype. In conclusion, a diet rich in EVOO has a positive effect on acute wound healing that is dependent on the duration of EVOO administration. Short-term EVOO diet supplementation increases oxidative damage and pro-inflammatory responses, which impaired acute wound closure. On the other hand, long-term EVOO supplementation reduces oxidative damage and enhances anti-inflammatory responses, which improved acute wound closure. The effects of EVOO on oxidation and inflammation in acute wounds are linked to the EVOO polyphenol HT.


Subject(s)
Oxidative Stress , Wound Healing , Mice , Animals , Olive Oil/pharmacology , Inflammation , Cytokines/metabolism , Polyphenols/pharmacology
2.
J Membr Biol ; 254(5-6): 499-512, 2021 12.
Article in English | MEDLINE | ID: mdl-34716469

ABSTRACT

We have previously shown that 21-benzylidene digoxin (21-BD) increases the total cholesterol and phospholipid content on the membrane of HeLa cells. Lipid modulation caused by cardiotonic steroids (CTS) is still unexplored. Therefore, the aim of the present study was to evaluate the cholesterol and phospholipid modulation of the cell membrane caused by ouabain and 21-BD and the possible involvement of the caveolae on this modulation. For this, one cell line containing caveolae (HeLa) and other not containing (Caco-2) were used. The modulation of the lipid profile was evaluated by total cholesterol and phospholipids measurements, and identification of membrane phospholipids by HPTLC. The cholesterol distribution was evaluated by filipin staining. The caveolin-1 expression was evaluated by Western Blotting. Ouabain had no effect on the total membrane lipid content in both cell lines. However, 21-BD increased total membrane phospholipid content and had no effect on the membrane cholesterol content in Caco-2 cells. CTS were not able to alter the specific phospholipids content. In the filipin experiments, 21-BD provoked a remarkable redistribution of cholesterol to the perinuclear region of HeLa cells. In Caco-2 cells, it was observed only a slight increase in cholesterol, especially as intracellular vesicles. The caveolin-1 expression was not altered by any of the compounds. Our data mainly show different effects of two cardiotonic steroids. Ouabain had no effect on the lipid profile of cells, whereas 21-BD causes important changes in cholesterol and phospholipid content. Therefore, the modulation of cholesterol content in the plasma membrane of HeLa cells is not correlated with the expression of caveolin-1.


Subject(s)
Cardiac Glycosides/metabolism , Caco-2 Cells , Caveolin 1 , Cholesterol , Filipin , HeLa Cells , Humans , Ouabain/pharmacology , Phospholipids
3.
Cell Mol Neurobiol ; 41(3): 525-536, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32415577

ABSTRACT

Olfactory ensheathing cells (OECs) are specialized glial cells of the olfactory system, believed to play a role in the continuous production of olfactory neurons and ensheathment of their axons. Although OECs are used in therapeutic applications, little is known about the cellular mechanisms underlying their migratory behavior. Recently, we showed that OEC migration is sensitive to ganglioside blockage through A2B5 and Jones antibody in OEC culture. Gangliosides are common components of lipid rafts, where they participate in several cellular mechanisms, including cell migration. Here, we characterized OEC lipid rafts, analyzing the presence of specific proteins and gangliosides that are commonly expressed in motile neural cells, such as young neurons, oligodendrocyte progenitors, and glioma cells. Our results showed that lipid rafts isolated from OECs were enriched in cholesterol, sphingolipids, phosphatidylcholine, caveolin-1, flotillin-1, gangliosides GM1 and 9-O-acetyl GD3, A2B5-recognized gangliosides, CNPase, α-actinin, and ß1-integrin. Analysis of the actin cytoskeleton of OECs revealed stress fibers, membrane spikes, ruffled membranes and lamellipodia during cell migration, as well as the distribution of α-actinin in membrane projections. This is the first description of α-actinin and flotillin-1 in lipid rafts isolated from OECs and suggests that, together with ß1-integrin and gangliosides, membrane lipid rafts play a role during OEC migration. This study provides new information on the molecular composition of OEC membrane microdomains that can impact on our understanding of the role of OEC lipid rafts under physiological and pathological conditions of the nervous system, including inflammation, hypoxia, aging, neurodegenerative diseases, head trauma, brain tumor, and infection.


Subject(s)
Membrane Microdomains/metabolism , Olfactory Bulb/cytology , 2',3'-Cyclic-Nucleotide Phosphodiesterases/metabolism , Animals , Biomarkers/metabolism , Cells, Cultured , Cholesterol/metabolism , Cytoskeletal Proteins/metabolism , Gangliosides/metabolism , Membrane Microdomains/ultrastructure , Rats, Wistar , S100 Proteins/metabolism
4.
Br J Nutr ; 121(12): 1345-1356, 2019 06.
Article in English | MEDLINE | ID: mdl-30940241

ABSTRACT

Perinatal maternal high-fat diet (HFD) increases susceptibility to obesity and fatty liver diseases in adult offspring, which can be attenuated by the potent hypolipidaemic action of fish oil (FO), an n-3 PUFA source, during adult life. Previously, we described that adolescent HFD offspring showed resistance to FO hypolipidaemic effects, although FO promoted hepatic molecular changes suggestive of reduced lipid accumulation. Here, we investigated whether this FO intervention only during the adolescence period could affect offspring metabolism in adulthood. Then, female Wistar rats received isoenergetic, standard (STD: 9 % fat) or high-fat (HFD: 28·6 % fat) diet before mating, and throughout pregnancy and lactation. After weaning, male offspring received the standard diet; and from 25 to 45 d old they received oral administration of soyabean oil or FO. At 150 d old, serum and hepatic metabolic parameters were evaluated. Maternal HFD adult offspring showed increased body weight, visceral adiposity, hyperleptinaemia and decreased hepatic pSTAT3/STAT3 ratio, suggestive of hepatic leptin resistance. FO intake only during the adolescence period reduced visceral adiposity and serum leptin, regardless of maternal diet. Maternal HFD promoted dyslipidaemia and hepatic TAG accumulation, which was correlated with reduced hepatic carnitine palmitoyl transferase-1a content, suggesting lipid oxidation impairment. FO intake did not change serum lipids; however, it restored hepatic TAG content and hepatic markers of lipid oxidation to STD offspring levels. Therefore, we concluded that FO intake exclusively during adolescence programmed STD offspring and reprogrammed HFD offspring male rats to a healthier metabolic phenotype in adult life, reducing visceral adiposity, serum leptin and hepatic TAG content in offspring adulthood.


Subject(s)
Diet, High-Fat/adverse effects , Dietary Supplements , Dyslipidemias/prevention & control , Fish Oils/administration & dosage , Prenatal Exposure Delayed Effects/prevention & control , Animals , Dyslipidemias/etiology , Fatty Acids, Omega-3/metabolism , Female , Intra-Abdominal Fat/metabolism , Leptin/blood , Liver/metabolism , Male , Maternal Nutritional Physiological Phenomena , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Rats , Rats, Wistar , Triglycerides/metabolism
5.
Parasitology ; 145(10): 1304-1310, 2018 09.
Article in English | MEDLINE | ID: mdl-29806577

ABSTRACT

The anti-leishmania effects of HIV peptidase inhibitors (PIs) have been widely reported; however, the biochemical target and mode of action are still a matter of controversy in Leishmania parasites. Considering the possibility that HIV-PIs induce lipid accumulation in Leishmania amazonensis, we analysed the effects of lopinavir on the lipid metabolism of L. amazonensis promastigotes. To this end, parasites were treated with lopinavir at different concentrations and analysed by fluorescence microscopy and spectrofluorimetry, using a fluorescent lipophilic marker. Then, the cellular ultrastructure of treated and control parasites was analysed by transmission electron microscopy (TEM), and the lipid composition was investigated by thin-layer chromatography (TLC). Finally, the sterol content was assayed by gas chromatography-mass spectrometry (GC/MS). TEM analysis revealed an increased number of lipid inclusions in lopinavir-treated cells, which was accompanied by an increase in the lipophilic content, in a dose-dependent manner. TLC and GC-MS analysis revealed a marked increase of cholesterol-esters and cholesterol. In conclusion, lopinavir-induced lipid accumulation and affected lipid composition in L. amazonensis in a concentration-response manner. These data contribute to a better understanding of the possible mechanisms of action of this HIV-PI in L. amazonensis promastigotes. The concerted action of lopinavir on this and other cellular processes, such as the direct inhibition of an aspartyl peptidase, may be responsible for the arrested development of the parasite.


Subject(s)
HIV Protease Inhibitors/pharmacology , Leishmania mexicana/drug effects , Lipid Metabolism/drug effects , Lipids/analysis , Lopinavir/pharmacology , Cholesterol/analysis , Chromatography, Thin Layer , Gas Chromatography-Mass Spectrometry , Leishmania mexicana/ultrastructure , Microscopy, Electron, Transmission , Sterols/analysis
6.
Proc Natl Acad Sci U S A ; 112(48): 14936-41, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26627243

ABSTRACT

Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.


Subject(s)
Adaptation, Physiological/genetics , Chagas Disease , Host-Parasite Interactions/genetics , Insect Vectors , Rhodnius , Trypanosoma cruzi/physiology , Animals , Base Sequence , Gene Transfer, Horizontal , Humans , Insect Vectors/genetics , Insect Vectors/parasitology , Molecular Sequence Data , Rhodnius/genetics , Rhodnius/parasitology , Wolbachia/genetics
7.
Parasitol Res ; 117(3): 793-799, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29352348

ABSTRACT

Despite the importance of fat body in metabolism of arthropods, studies in ticks are scarce. This study evaluated the lipid composition and activation of extracellular signal-regulated protein kinase (ERK) and AMP-activated protein kinase (AMPK) enzymes in Rhipicephalus microplus fat body after infection with different isolates of the fungus Metarhizium anisopliae sensu lato (Metschnikoff, 1879) Sorokin, 1883. The isolates CG 32, GC 112, GC 148, GC 347, and GC 629 were inoculated as viable or non-viable conidia in the ticks. The engorged females were dissected, and their fat bodies were collected 24 and 48 h after infection. The lipid composition was assessed by thin layer chromatography, and enzyme activation was detected by Western blotting with antibodies against p-AMPK and p-ERK. The study showed increased levels of triacylglycerol 24 and 48 h and fatty acid after 48 h after inoculation with different isolates of viable fungi in the tick's hemocoel. Detection of the active form of ERK was demonstrated only after inoculation with non-viable conidia of all isolates tested. The active form of AMPK, only isolate CG 112 was able to activate with viable or non-viable conidia, whereas isolates CG 32 and CG 629 were able to activate with non-viable conidia. This study provides the first report about changes in important metabolic pathways in ticks infected with entomopathogenic fungi and suggests that the lipid content is modulated by non-usual pathways. However, further studies may be necessary for a better elucidation of this interaction.


Subject(s)
Lipid Metabolism , MAP Kinase Signaling System , Metarhizium/physiology , Rhipicephalus/microbiology , Animals , Chromatography, Thin Layer , Fat Body/metabolism , Female , Rhipicephalus/metabolism , Spores, Fungal
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(2): 246-254, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27871882

ABSTRACT

Mansonic schistosomiasis is a disease caused by the trematode Schistosoma mansoni, endemic to tropical countries. S. mansoni infection induces the formation of granulomas and potent polarization of Th2-type immune response. There is great interest in understanding the mechanisms used by this parasite that causes a modulation of the immune system. Recent studies from our group demonstrated that lipids of S. mansoni, including lysophosphatidylcholine (LPC) have immunomodulatory activity. In the present study, our aim was to investigate the role of lipids derived from S. mansoni in the activation and polarization of macrophages and to characterize the mechanisms involved in this process. Peritoneal macrophages obtained from wild type C57BL/6mice or bone marrow derived macrophages were stimulated in vitro with lipids extracted from adult worms of S. mansoni. We demonstrated that total schistosomal-derived lipids as well as purified LPC induced alternatively activated macrophages/M2 profile observed by increased expression of arginase-1, mannose receptor, Chi3l3, TGFß and production of IL-10 and PGE2 24h after stimulation. The involvement of the nuclear receptor PPARγ in macrophage response against LPC was investigated. Through Western blot and immunofluorescence confocal microscopy we demonstrated that schistosomal-derived LPC induces increased expression of PPARγ in macrophages. The LPC-induced increased expression of arginase-1 were significantly inhibited by the PPAR-γ antagonist GW9662. Together, these results demonstrate an immunomodulatory role of schistosomal-derived LPC in activating macrophages to a profile of the type M2 through PPARγ-dependent mechanisms, indicating a novel pathway for macrophage polarization triggered by parasite-derived LPC with potential implications to disease pathogenesis.


Subject(s)
Lysophosphatidylcholines/metabolism , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/physiology , PPAR gamma/metabolism , Schistosoma mansoni/metabolism , Animals , Arginase/metabolism , Interleukin-10/metabolism , Lipids/physiology , Macrophage Activation/physiology , Mice , Mice, Inbred C57BL
9.
J Bacteriol ; 197(23): 3698-707, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26391209

ABSTRACT

UNLABELLED: Mycobacterium leprae induces the formation of lipid droplets, which are recruited to pathogen-containing phagosomes in infected macrophages and Schwann cells. Cholesterol is among the lipids with increased abundance in M. leprae-infected cells, and intracellular survival relies on cholesterol accumulation. The present study investigated the capacity of M. leprae to acquire and metabolize cholesterol. In silico analyses showed that oxidation of cholesterol to cholest-4-en-3-one (cholestenone), the first step of cholesterol degradation catalyzed by the enzyme 3ß-hydroxysteroid dehydrogenase (3ß-HSD), is apparently the only portion of the cholesterol catabolic pathway seen in Mycobacterium tuberculosis preserved by M. leprae. Incubation of bacteria with radiolabeled cholesterol confirmed the in silico predictions. Radiorespirometry and lipid analyses performed after incubating M. leprae with [4-(14)C]cholesterol or [26-(14)C]cholesterol showed the inability of this pathogen to metabolize the sterol rings or the side chain of cholesterol as a source of energy and carbon. However, the bacteria avidly incorporated cholesterol and, as expected, converted it to cholestenone both in vitro and in vivo. Our data indicate that M. leprae has lost the capacity to degrade and utilize cholesterol as a nutritional source but retains the enzyme responsible for its oxidation to cholestenone. Thus, the essential role of cholesterol metabolism in the intracellular survival of M. leprae is uncoupled from central carbon metabolism and energy production. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies. IMPORTANCE: Our study focused on the obligate intracellular pathogen Mycobacterium leprae and its capacity to metabolize cholesterol. The data make an important contribution for those interested in understanding the mechanisms of mycobacterial pathogenesis, since they indicate that the essential role of cholesterol for M. leprae intracellular survival does not rely on its utilization as a nutritional source. Our findings reinforce the complexity of cholesterol's role in sustaining M. leprae infection. Further elucidation of cholesterol metabolism in the host cell during M. leprae infection will establish the mechanism by which this lipid supports M. leprae intracellular survival and will open new avenues for novel leprosy therapies.


Subject(s)
Carbon/metabolism , Cholesterol/metabolism , Mycobacterium leprae/metabolism , Energy Metabolism , Humans , Leprosy/microbiology , Microbial Viability , Mycobacterium leprae/genetics , Mycobacterium leprae/growth & development
10.
Cell Microbiol ; 16(6): 797-815, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24552180

ABSTRACT

We recently showed that Mycobacterium leprae (ML) is able to induce lipid droplet formation in infected macrophages. We herein confirm that cholesterol (Cho) is one of the host lipid molecules that accumulate in ML-infected macrophages and investigate the effects of ML on cellular Cho metabolism responsible for its accumulation. The expression levels of LDL receptors (LDL-R, CD36, SRA-1, SR-B1, and LRP-1) and enzymes involved in Cho biosynthesis were investigated by qRT-PCR and/or Western blot and shown to be higher in lepromatous leprosy (LL) tissues when compared to borderline tuberculoid (BT) lesions. Moreover, higher levels of the active form of the sterol regulatory element-binding protein (SREBP) transcriptional factors, key regulators of the biosynthesis and uptake of cellular Cho, were found in LL skin biopsies. Functional in vitro assays confirmed the higher capacity of ML-infected macrophages to synthesize Cho and sequester exogenous LDL-Cho. Notably, Cho colocalized to ML-containing phagosomes, and Cho metabolism impairment, through either de novo synthesis inhibition by statins or depletion of exogenous Cho, decreased intracellular bacterial survival. These findings highlight the importance of metabolic integration between the host and bacteria to leprosy pathophysiology, opening new avenues for novel therapeutic strategies to leprosy.


Subject(s)
Cholesterol/metabolism , Host-Pathogen Interactions , Macrophages/microbiology , Microbial Viability , Mycobacterium leprae/physiology , Phagosomes/microbiology , Animals , Blotting, Western , Cells, Cultured , Gene Expression Profiling , Humans , Leprosy/drug therapy , Macrophages/metabolism , Mice, Inbred C57BL , Phagosomes/metabolism , Real-Time Polymerase Chain Reaction , Receptors, LDL/biosynthesis , Receptors, LDL/genetics , Sterol Regulatory Element Binding Proteins/biosynthesis , Sterol Regulatory Element Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL