Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Med Genet ; 59(2): 165-169, 2022 02.
Article in English | MEDLINE | ID: mdl-33436522

ABSTRACT

BACKGROUND: Pathogenic heterozygous SIX1 variants (predominantly missense) occur in branchio-otic syndrome (BOS), but an association with craniosynostosis has not been reported. METHODS: We investigated probands with craniosynostosis of unknown cause using whole exome/genome (n=628) or RNA (n=386) sequencing, and performed targeted resequencing of SIX1 in 615 additional patients. Expression of SIX1 protein in embryonic cranial sutures was examined in the Six1nLacZ/+ reporter mouse. RESULTS: From 1629 unrelated cases with craniosynostosis we identified seven different SIX1 variants (three missense, including two de novo mutations, and four nonsense, one of which was also present in an affected twin). Compared with population data, enrichment of SIX1 loss-of-function variants was highly significant (p=0.00003). All individuals with craniosynostosis had sagittal suture fusion; additionally four had bilambdoid synostosis. Associated BOS features were often attenuated; some carrier relatives appeared non-penetrant. SIX1 is expressed in a layer basal to the calvaria, likely corresponding to the dura mater, and in the mid-sagittal mesenchyme. CONCLUSION: Craniosynostosis is associated with heterozygous SIX1 variants, with possible enrichment of loss-of-function variants compared with classical BOS. We recommend screening of SIX1 in craniosynostosis, particularly when sagittal±lambdoid synostosis and/or any BOS phenotypes are present. These findings highlight the role of SIX1 in cranial suture homeostasis.


Subject(s)
Craniosynostoses/genetics , Homeodomain Proteins/genetics , Animals , Child, Preschool , Cohort Studies , Cranial Sutures/embryology , Cranial Sutures/pathology , Craniosynostoses/complications , Craniosynostoses/embryology , DNA Mutational Analysis , Genetic Association Studies , Homeodomain Proteins/physiology , Humans , Infant , Mice , Pedigree , Phenotype , RNA-Seq , Whole Genome Sequencing
2.
Am J Med Genet A ; 170A(2): 403-409, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26566760

ABSTRACT

Approximately a hundred patients with terminal 10q deletions have been described. They present with a wide range of clinical features always accompanied by delayed development, intellectual disability and craniofacial dysmorphisms. Here, we report a girl and a boy with craniosynostosis, developmental delay and other congenital anomalies. Karyotyping and molecular analysis including Multiplex Ligation dependent probe amplification (MLPA) and Array Comparative Genomic Hybridization (aCGH) were performed in both patients. We detected a 13.1 Mb pure deletion at 10q26.12-q26.3 in the girl and a 10.9 Mb pure deletion at 10q26.13-q26.3 in the boy, both encompassing about 100 genes. The clinical and molecular findings in these patients reinforce the importance of the DOCK1 smallest region of overlap I (SRO I), previously suggested to explain the clinical signs, and together with a review of the literature suggest a second 3.5 Mb region important for the phenotype (SRO II). Genotype-phenotype correlations and literature data suggest that the craniosynostosis is not directly related to dysregulated signaling in suture development, but may be secondary to alterations in brain development instead. Further, genes at 10q26 may be involved in the molecular crosstalk between brain and cranial vault.


Subject(s)
Brain/abnormalities , Chromosome Deletion , Chromosomes, Human, Pair 10/genetics , Craniosynostoses/etiology , Learning Disabilities/etiology , Sutures/adverse effects , Adult , Brain/pathology , Comparative Genomic Hybridization , Craniosynostoses/pathology , Facies , Female , Humans , Infant, Newborn , Learning Disabilities/pathology , Male , Prognosis
3.
Stem Cells Dev ; 25(16): 1249-60, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27339175

ABSTRACT

Apert Syndrome (AS) is one of the most severe forms of craniosynostosis. It is caused by gain-of-function mutations in the receptor fibroblast growth factor receptor 2 (FGFR2), which leads to ligand-receptor promiscuity. Here, we aimed to better understand the behavior of mesenchymal stem cells (MSCs) and of fibroblastoid cells, cellular populations that are part of the suture complex, when stimulated with different fibroblast growth factors (FGFs). We also aimed to verify whether FGFR2 specificity loss due to AS mutations would change their signaling behavior. We tested this hypothesis through cell proliferation and differentiation assays and through gene expression profiling. We found that FGF19 and FGF10 increase proliferation of fibroblastoid cells harboring the FGFR2 p.S252W mutation, but not of mutant MSCs. FGF19 and FGF10 were associated with different expression profiles in p.S252W cells. Further, in accordance to our gene expression microarray data, FGF19 decreases bone differentiation rate of mutant fibroblastoid cells and increases bone differentiation rate of MSCs. This effect in osteogenesis appears to be mediated by BMP signaling. The present data indicate that non-natural FGFR2 ligands, such as FGF10 and FGF19, are important factors in the pathophysiology of AS. Further research is needed to determine the role of modulation of MSC proliferation or use of FGF19 or anti-BMP2 as inhibitors of osteogenesis in AS subjects' cells, and whether these findings can be used in the clinical management of AS.


Subject(s)
Acrocephalosyndactylia/metabolism , Fibroblast Growth Factor 10/metabolism , Fibroblast Growth Factor 9/metabolism , Signal Transduction , Acrocephalosyndactylia/genetics , Acrocephalosyndactylia/pathology , Animals , Bone Morphogenetic Proteins/metabolism , Cell Differentiation/genetics , Cell Proliferation , Gene Expression Profiling , Gene Regulatory Networks , Humans , Mesenchymal Stem Cells/metabolism , Mutation/genetics , Osteogenesis/genetics , Rats, Wistar , Receptor, Fibroblast Growth Factor, Type 2/genetics
4.
Prostate Cancer ; 2013: 920612, 2013.
Article in English | MEDLINE | ID: mdl-23738079

ABSTRACT

Prostate cancer (PCa) is one of the most common malignancies found in males. The development of PCa involves several mutations in prostate epithelial cells, usually linked to developmental changes, such as enhanced resistance to apoptotic death, constitutive proliferation, and, in some cases, to differentiation into an androgen deprivation-resistant phenotype, leading to the appearance of castration-resistant PCa (CRPCa), which leads to a poor prognosis in patients. In this review, we summarize recent findings concerning the main deregulations into signaling pathways that will lead to the development of PCa and/or CRPCa. Key mutations in some pathway molecules are often linked to a higher prevalence of PCa, by directly affecting the respective cascade and, in some cases, by deregulating a cross-talk node or junction along the pathways. We also discuss the possible environmental and nonenvironmental inducers for these mutations, as well as the potential therapeutic strategies targeting these signaling pathways. A better understanding of how some risk factors induce deregulation of these signaling pathways, as well as how these deregulated pathways affect the development of PCa and CRPCa, will further help in the development of new treatments and prevention strategies for this disease.

5.
Stem Cells Int ; 2012: 303610, 2012.
Article in English | MEDLINE | ID: mdl-22550502

ABSTRACT

Adipose tissue-derived stem cells (ASCs) association to fat in autologous lipotransfer is promising for a more effective soft tissue reconstruction, and optimization of protocols to isolate ASCs from lipoaspirate fat is much needed. We demonstrated that an increase in adipocyte differentiation is dependent on the number of ASCs. In a sample of 10 donors, we found a higher concentration of nucleated cells in the lower abdomen compared to flank (P = 0.015). In a sample of 6 donors we did not find differences in the cell yield obtained by manual or pump-assisted aspiration (P = 0.56). We suggest that the increase in the number of ASCs in the reinjected fat may enhance the efficiency of newly formed adipose tissue and that the anatomical region from which to harvest fat tissue needs to be considered to optimize the number of ASCs in the harvested tissue. Finally, pump-assisted aspiration can be used without any significant harm to the viability of cells.

6.
Stem Cell Rev Rep ; 8(3): 685-95, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22048896

ABSTRACT

Gain-of-function mutations in FGFR2 cause Apert syndrome (AS), a disease characterized by craniosynostosis and limb bone defects both due to abnormalities in bone differentiation and remodeling. Although the periosteum is an important cell source for bone remodeling, its role in craniosynostosis remains poorly characterized. We hypothesized that periosteal mesenchymal stem cells (MSCs) and fibroblasts from AS patients have abnormal cell phenotypes that contribute to the recurrent fusion of the coronal sutures. MSCs and fibroblasts were obtained from the periostea of 3 AS patients (S252W) and 3 control individuals (WT). We evaluated the proliferation, migration, and osteogenic differentiation of these cells. Interestingly, S252W mutation had opposite effects on different cell types: S252W MSCs proliferated less than WT MSCs, while S252W fibroblasts proliferated more than WT fibroblasts. Under restrictive media conditions, only S252W fibroblasts showed enhanced migration. The presence of S252W mutation increased in vitro and in vivo osteogenic differentiation in both studied cell types, though the difference compared to WT cells was more pronounced in S252W fibroblasts. This osteogenic differentiation was reversed through inhibition of JNK. We demonstrated that S252W fibroblasts can induce osteogenic differentiation in periosteal MSCs but not in MSCs from another tissue. MSCs and fibroblasts responded differently to the pathogenic effects of the FGFR2(S252W) mutation. We propose that cells from the periosteum have a more important role in the premature fusion of cranial sutures than previously thought and that molecules in JNK pathway are strong candidates for the treatment of AS patients.


Subject(s)
Fibroblasts/metabolism , Mesenchymal Stem Cells/metabolism , Mutation, Missense , Receptor, Fibroblast Growth Factor, Type 2/genetics , Acrocephalosyndactylia/genetics , Acrocephalosyndactylia/pathology , Animals , Anthracenes/pharmacology , Antigens, CD/metabolism , Bone Regeneration , Case-Control Studies , Cell Communication , Cell Differentiation , Cell Movement , Cell Proliferation , Fibroblasts/transplantation , Genetic Association Studies , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Osteogenesis , Periosteum/pathology , Phenotype , Rats , Rats, Wistar , Skull/pathology , Skull/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL