Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Semin Cell Dev Biol ; 140: 35-53, 2023 05 15.
Article in English | MEDLINE | ID: mdl-35710759

ABSTRACT

The establishment of neuronal connectivity relies on the microtubule (MT) cytoskeleton, which provides mechanical support, roads for axonal transport and mediates signalling events. Fine-tuned spatiotemporal regulation of MT functions by tubulin post-translational modifications and MT-associated proteins is critical for the coarse wiring and subsequent refinement of neuronal connectivity. The defective regulation of these processes causes a wide range of neurodevelopmental disorders associated with connectivity defects. This review focuses on recent studies unravelling how MT composition, post-translational modifications and associated proteins influence MT functions in axon guidance and/or pruning to build functional neuronal circuits. We here summarise experimental evidence supporting the key role of this network as a driving force for growth cone steering and branch-specific axon elimination. We further provide a global overview of the MT-interactors that tune developing axon behaviours, with a special emphasis on their emerging versatility in the regulation of MT dynamics/structure. Recent studies establishing the key and highly selective role of the tubulin code in the regulation of MT functions in axon pathfinding are also reported. Finally, our review highlights the emerging molecular links between these MT regulation processes and guidance signals that wire the nervous system.


Subject(s)
Axon Guidance , Tubulin , Tubulin/metabolism , Microtubules/metabolism , Microtubule-Associated Proteins/metabolism , Axons/metabolism
2.
Mol Psychiatry ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454080

ABSTRACT

Mutations of PAK3, a p21-activated kinase, are associated in humans with cognitive deficits suggestive of defective cortical circuits and with frequent brain structural abnormalities. Most human variants no longer exhibit kinase activity. Since GABAergic interneurons express PAK3 as they migrate within the cortex, we here examined the role of PAK3 kinase activity in the regulation of cortical interneuron migration. During the embryonic development, cortical interneurons migrate a long distance tangentially and then re-orient radially to settle in the cortical plate, where they contribute to cortical circuits. We showed that interneurons expressing a constitutively kinase active PAK3 variant (PAK3-ca) extended shorter leading processes and exhibited unstable polarity. In the upper cortical layers, they entered the cortical plate and extended radially oriented processes. In the deep cortical layers, they exhibited erratic non-processive migration movements and accumulated in the deep pathway. Pharmacological inhibition of PAK3 kinase inhibited the radial migration switch of interneurons to the cortical plate and reduced their accumulation in the deep cortical layers. Interneurons expressing a kinase dead PAK3 variant (PAK3-kd) developed branched leading processes, maintained the same polarity during migration and exhibited processive and tangentially oriented movements in the cortex. These results reveal that PAK3 kinase activity, by promoting leading process shortening and cell polarity changes, inhibits the tangential processive migration of interneurons and favors their radial re- orientation and targeting to the cortical plate. They suggest that patients expressing PAK3 variants with impaired kinase activity likely present alterations in the cortical targeting of their GABAergic interneurons.

3.
Nat Commun ; 14(1): 8003, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049397

ABSTRACT

Directed cell migration requires sustained cell polarisation. In migrating cortical interneurons, nuclear movements are directed towards the centrosome that organises the primary cilium signalling hub. Primary cilium-elicited signalling, and how it affects migration, remain however ill characterised. Here, we show that altering cAMP/cGMP levels in the primary cilium by buffering cAMP, cGMP or by locally increasing cAMP, influences the polarity and directionality of migrating interneurons, whereas buffering cAMP or cGMP in the apposed centrosome compartment alters their motility. Remarkably, we identify CXCL12 as a trigger that targets the ciliary cAMP/cGMP ratio to promote sustained polarity and directed migration. We thereby uncover cAMP/cGMP levels in the primary cilium as a major target of extrinsic cues and as the steering wheel of neuronal migration.


Subject(s)
Cell Polarity , Cilia , Cilia/physiology , Cyclic GMP , Interneurons/physiology , Cell Movement/physiology
4.
Methods Mol Biol ; 2431: 325-350, 2022.
Article in English | MEDLINE | ID: mdl-35412285

ABSTRACT

Axonal transport is crucial for neuronal homeostasis, survival, and development. Indeed, axonal transport needs to be precisely regulated for developing axons to swiftly and accurately respond to their complex and evolving environment in space and time. A growing number of studies have started to unravel the diversity of regulatory and adaptor proteins required to orchestrate the axonal transport machinery. Despite some discrepancies between in vitro and in vivo axonal transport studies, most analyses aiming at deciphering these regulatory complexes, as well as their mode of action, were carried out in vitro in primary cultures of neurons, and mainly focused on their impact on axon specification and elongation, but rarely on axon navigation per se. Given the clear influence of the in vivo environment on axonal transport, including chemical and physical interactions with neighboring cells, it is essential to develop in vivo models to identify and characterize the molecular complexes involved in this key process. Here, we describe an experimental system to monitor axonal transport in vivo in developing axons of live zebrafish embryos with high spatial and temporal resolution. Due to its optical transparency and easy genetic manipulation, the zebrafish embryo is ideally suited to study such cellular dynamics at a single axon scale. Using this approach, we were able to unravel the key role of Fidgetin-like 1 in the regulation of bidirectional axonal transport required for motor axon targeting. Moreover, this protocol can be easily adapted to characterize a wide range of axonal transport regulators and components in physiological conditions and may additionally be used to screen new therapeutic compounds based on their ability to recue axonal transport defects in pathological conditions.


Subject(s)
Axonal Transport , Zebrafish , Animals , Axonal Transport/physiology , Axons/metabolism , Neurons/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism
5.
Cell Rep ; 32(3): 107934, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32697983

ABSTRACT

Calcium is a second messenger crucial to a myriad of cellular processes ranging from regulation of metabolism and cell survival to vesicle release and motility. Current strategies to directly manipulate endogenous calcium signals lack cellular and subcellular specificity. We introduce SpiCee, a versatile and genetically encoded chelator combining low- and high-affinity sites for calcium. This scavenger enables altering endogenous calcium signaling and functions in single cells in vitro and in vivo with biochemically controlled subcellular resolution. SpiCee paves the way to investigate local calcium signaling in vivo and directly manipulate this second messenger for therapeutic use.


Subject(s)
Calcium/metabolism , Genetic Techniques , Adenosine Triphosphate/metabolism , Animals , Calcium Signaling/drug effects , Cell Death/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Chelating Agents/pharmacology , HEK293 Cells , Humans , Mice, Inbred C57BL , Neurons/cytology , Neurons/drug effects , Signal Transduction/drug effects , Subcellular Fractions/metabolism , Thapsigargin/pharmacology
6.
J Cell Biol ; 218(10): 3290-3306, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31541015

ABSTRACT

Neuronal connectivity relies on molecular motor-based axonal transport of diverse cargoes. Yet the precise players and regulatory mechanisms orchestrating such trafficking events remain largely unknown. We here report the ATPase Fignl1 as a novel regulator of bidirectional transport during axon navigation. Using a yeast two-hybrid screen and coimmunoprecipitation assays, we showed that Fignl1 binds the kinesin Kif1bß and the dynein/dynactin adaptor Bicaudal D-1 (Bicd1) in a molecular complex including the dynactin subunit dynactin 1. Fignl1 colocalized with Kif1bß and showed bidirectional mobility in zebrafish axons. Notably, Kif1bß and Fignl1 loss of function similarly altered zebrafish motor axon pathfinding and increased dynein-based transport velocity of Rab3 vesicles in these navigating axons, pinpointing Fignl1/Kif1bß as a dynein speed limiter complex. Accordingly, disrupting dynein/dynactin activity or Bicd1/Fignl1 interaction induced motor axon pathfinding defects characteristic of Fignl1 gain or loss of function, respectively. Finally, pharmacological inhibition of dynein activity partially rescued the axon pathfinding defects of Fignl1-depleted larvae. Together, our results identify Fignl1 as a key dynein regulator required for motor circuit wiring.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Axons/metabolism , Cytoskeletal Proteins/metabolism , Dyneins/metabolism , Kinesins/metabolism , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/metabolism , Animals , Biological Transport , COS Cells , Cells, Cultured , Chlorocebus aethiops , Humans , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL