Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Med Imaging ; 21(1): 45, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750343

ABSTRACT

OBJECTIVE: To investigate left atrial shape differences on CT scans of atrial fibrillation (AF) patients with (AF+) versus without (AF-) post-ablation recurrence and whether these shape differences predict AF recurrence. METHODS: This retrospective study included 68 AF patients who had pre-catheter ablation cardiac CT scans with contrast. AF recurrence was defined at 1 year, excluding a 3-month post-ablation blanking period. After creating atlases of atrial models from segmented AF+ and AF- CT images, an atlas-based implicit shape differentiation method was used to identify surface of interest (SOI). After registering the SOI to each patient model, statistics of the deformation on the SOI were used to create shape descriptors. The performance in predicting AF recurrence using shape features at and outside the SOI and eight clinical factors (age, sex, left atrial volume, left ventricular ejection fraction, body mass index, sinus rhythm, and AF type [persistent vs paroxysmal], catheter-ablation type [Cryoablation vs Irrigated RF]) were compared using 100 runs of fivefold cross validation. RESULTS: Differences in atrial shape were found surrounding the pulmonary vein ostia and the base of the left atrial appendage. In the prediction of AF recurrence, the area under the receiver-operating characteristics curve (AUC) was 0.67 for shape features from the SOI, 0.58 for shape features outside the SOI, 0.71 for the clinical parameters, and 0.78 combining shape and clinical features. CONCLUSION: Differences in left atrial shape were identified between AF recurrent and non-recurrent patients using pre-procedure CT scans. New radiomic features corresponding to the differences in shape were found to predict post-ablation AF recurrence.


Subject(s)
Atrial Fibrillation/surgery , Catheter Ablation , Heart Atria/anatomy & histology , Machine Learning , Pulmonary Veins/anatomy & histology , Aged , Atrial Appendage/anatomy & histology , Female , Humans , Male , Middle Aged , Prognosis , ROC Curve , Recurrence , Retrospective Studies
2.
IEEE J Transl Eng Health Med ; 10: 1800209, 2022.
Article in English | MEDLINE | ID: mdl-34976444

ABSTRACT

Objective: To identify radiomic and clinical features associated with post-ablation recurrence of AF, given that cardiac morphologic changes are associated with persistent atrial fibrillation (AF), and initiating triggers of AF often arise from the pulmonary veins which are targeted in ablation. Methods: Subjects with pre-ablation contrast CT scans prior to first-time catheter ablation for AF between 2014-2016 were retrospectively identified. A training dataset (D1) was constructed from left atrial and pulmonary vein morphometric features extracted from equal numbers of consecutively included subjects with and without AF recurrence determined at 1 year. The top-performing combination of feature selection and classifier methods based on C-statistic was evaluated on a validation dataset (D2), composed of subjects retrospectively identified between 2005-2010. Clinical models ([Formula: see text]) were similarly evaluated and compared to radiomic ([Formula: see text]) and radiomic-clinical models ([Formula: see text]), each independently validated on D2. Results: Of 150 subjects in D1, 108 received radiofrequency ablation and 42 received cryoballoon. Radiomic features of recurrence included greater right carina angle, reduced anterior-posterior atrial diameter, greater atrial volume normalized to height, and steeper right inferior pulmonary vein angle. Clinical features predicting recurrence included older age, greater BMI, hypertension, and warfarin use; apixaban use was associated with reduced recurrence. AF recurrence was predicted with radio-frequency ablation models on D2 subjects with C-statistics of 0.68, 0.63, and 0.70 for radiomic, clinical, and combined feature models, though these were not prognostic in patients treated with cryoballoon. Conclusions: Pulmonary vein morphology associated with increased likelihood of AF recurrence within 1 year of catheter ablation was identified on cardiac CT. Significance: Radiomic and clinical features-based predictive models may assist in identifying atrial fibrillation ablation candidates with greatest likelihood of successful outcome.


Subject(s)
Atrial Fibrillation , Pulmonary Veins , Atrial Fibrillation/diagnostic imaging , Humans , Pulmonary Veins/diagnostic imaging , Recurrence , Retrospective Studies , Treatment Outcome
3.
J Imaging ; 2(4)2016 Dec.
Article in English | MEDLINE | ID: mdl-28280723

ABSTRACT

Image segmentation is an important process that separates objects from the background and also from each other. Applied to cells, the results can be used for cell counting which is very important in medical diagnosis and treatment, and biological research that is often used by scientists and medical practitioners. Segmenting 3D confocal microscopy images containing cells of different shapes and sizes is still challenging as the nuclei are closely packed. The watershed transform provides an efficient tool in segmenting such nuclei provided a reasonable set of markers can be found in the image. In the presence of low-contrast variation or excessive noise in the given image, the watershed transform leads to over-segmentation (a single object is overly split into multiple objects). The traditional watershed uses the local minima of the input image and will characteristically find multiple minima in one object unless they are specified (marker-controlled watershed). An alternative to using the local minima is by a supervised technique called seeded watershed, which supplies single seeds to replace the minima for the objects. Consequently, the accuracy of a seeded watershed algorithm relies on the accuracy of the predefined seeds. In this paper, we present a segmentation approach based on the geometric morphological properties of the 'landscape' using curvatures. The curvatures are computed as the eigenvalues of the Shape matrix, producing accurate seeds that also inherit the original shape of their respective cells. We compare with some popular approaches and show the advantage of the proposed method.

SELECTION OF CITATIONS
SEARCH DETAIL