Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 113(1): 011102, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-25032916

ABSTRACT

We present the results of a search for gravitational waves associated with 223 γ-ray bursts (GRBs) detected by the InterPlanetary Network (IPN) in 2005-2010 during LIGO's fifth and sixth science runs and Virgo's first, second, and third science runs. The IPN satellites provide accurate times of the bursts and sky localizations that vary significantly from degree scale to hundreds of square degrees. We search for both a well-modeled binary coalescence signal, the favored progenitor model for short GRBs, and for generic, unmodeled gravitational wave bursts. Both searches use the event time and sky localization to improve the gravitational wave search sensitivity as compared to corresponding all-time, all-sky searches. We find no evidence of a gravitational wave signal associated with any of the IPN GRBs in the sample, nor do we find evidence for a population of weak gravitational wave signals associated with the GRBs. For all IPN-detected GRBs, for which a sufficient duration of quality gravitational wave data are available, we place lower bounds on the distance to the source in accordance with an optimistic assumption of gravitational wave emission energy of 10(-2)M⊙c(2) at 150 Hz, and find a median of 13 Mpc. For the 27 short-hard GRBs we place 90% confidence exclusion distances to two source models: a binary neutron star coalescence, with a median distance of 12 Mpc, or the coalescence of a neutron star and black hole, with a median distance of 22 Mpc. Finally, we combine this search with previously published results to provide a population statement for GRB searches in first-generation LIGO and Virgo gravitational wave detectors and a resulting examination of prospects for the advanced gravitational wave detectors.

2.
J Biomech Eng ; 135(5): 51005, 2013 May.
Article in English | MEDLINE | ID: mdl-24231961

ABSTRACT

The lymphatic system plays important roles in protein and solute transport as well as in the immune system. Its functionality is vital to proper homeostasis and fluid balance. Lymph may be propelled by intrinsic (active) vessel pumping or passive compression from external tissue movement. With regard to the former, nitric oxide (NO) is known to play an important role modulating lymphatic vessel contraction and vasodilation. Lymphatic endothelial cells (LECs) are sensitive to shear, and increases in flow have been shown to cause enhanced production of NO by LECs. Additionally, high concentrations of NO have been experimentally observed in the sinus region of mesenteric lymphatic vessels. A computational flow and mass transfer model using physiologic geometries obtained from confocal images of a rat mesenteric lymphatic vessel was developed to determine the characteristics of NO transport in the lymphatic flow regime. Both steady and unsteady analyses were performed. Production of NO was shear-dependent; basal cases using constant production were also generated. Simulations revealed areas of flow stagnation adjacent to the valve leaflets, suggesting the high concentrations observed here experimentally are due to minimal convection in this region. LEC sensitivity to shear was found to alter the concentration of NO in the vessel, and the convective forces were found to profoundly affect the concentration of NO at a Péclet value greater than approximately 61. The quasisteady analysis was able to resolve wall shear stress within 0.15% of the unsteady case. However, the percent difference between unsteady and quasisteady conditions was higher for NO concentration (6.7%). We have shown high NO concentrations adjacent to the valve leaflets are most likely due to flow-mediated processes rather than differential production by shear-sensitive LECs. Additionally, this model supports experimental findings of shear-dependent production, since removing shear dependence resulted in concentrations that are physiologically counterintuitive. Understanding the transport mechanisms and flow regimes in the lymphatic vasculature could help in the development of therapeutics to treat lymphatic disorders.


Subject(s)
Computer Simulation , Lymphatic Vessels/metabolism , Nitric Oxide/metabolism , Animals , Biological Transport , Male , Microscopy, Confocal , Models, Biological , Nitric Oxide/biosynthesis , Rats , Rats, Sprague-Dawley , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL