Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Molecules ; 25(4)2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32102359

ABSTRACT

Biology is dominated by polyanions (cell membranes, nucleic acids, and polysaccharides just to name a few), and achieving selective recognition between biological polyanions and synthetic systems currently constitutes a major challenge in many biomedical applications, nanovectors-assisted gene delivery being a prime example. This review work summarizes some of our recent efforts in this field; in particular, by using a combined experimental/computation approach, we investigated in detail some critical aspects in self-assembled nanomicelles and two major polyanions-DNA and heparin.


Subject(s)
DNA/chemistry , Heparin/chemistry , Nanostructures/chemistry , Polymers/chemistry , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Methylamines/chemistry , Micelles , Molecular Dynamics Simulation , Polyelectrolytes , Solutions , Spermidine/chemistry , Spermine/chemistry , Thermodynamics
2.
Bioorg Med Chem ; 26(4): 855-868, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29325885

ABSTRACT

Bovine viral diarrhea virus (BVDV) infection is still a plague that causes important livestock pandemics. Despite the availability of vaccines against BVDV, and the implementation of massive eradication or control programs, this virus still constitutes a serious agronomic burden. Therefore, the alternative approach to combat Pestivirus infections, based on the development of antiviral agents that specifically inhibit the replication of these viruses, is of preeminent actuality and importance. Capitalizing from a long-standing experience in antiviral drug design and development, in this work we present and characterize a series of small molecules based on the 9-aminoacridine scaffold that exhibit potent anti-BVDV activity coupled with low cytotoxicity. The relevant viral protein target - the RNA-dependent RNA polymerase - the binding mode, and the mechanism of action of these new antivirals have been determined by a combination of in vitro (i.e., enzymatic inhibition, isothermal titration calorimetry and site-directed mutagenesis assays) and computational experiments. The overall results obtained confirm that these acridine-based derivatives are promising compounds in the treatment of BVDV infections and, based on the reported structure-activity relationship, can be selected as a starting point for the design of a new generation of improved, safe and selective anti-BVDV agents.


Subject(s)
Aminacrine/chemistry , Antiviral Agents/chemistry , Diarrhea Viruses, Bovine Viral/physiology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Aminacrine/metabolism , Aminacrine/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Binding Sites , Calorimetry , Cattle , Diarrhea Viruses, Bovine Viral/enzymology , Drug Design , Molecular Docking Simulation , Mutagenesis, Site-Directed , Protein Structure, Tertiary , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Structure-Activity Relationship , Thermodynamics , Virus Replication/drug effects
3.
PLoS Pathog ; 11(12): e1005354, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26720726

ABSTRACT

Prions are infectious proteins that possess multiple self-propagating structures. The information for strains and structural specific barriers appears to be contained exclusively in the folding of the pathological isoform, PrP(Sc). Many recent studies determined that de novo prion strains could be generated in vitro from the structural conversion of recombinant (rec) prion protein (PrP) into amyloidal structures. Our aim was to elucidate the conformational diversity of pathological recPrP amyloids and their biological activities, as well as to gain novel insights in characterizing molecular events involved in mammalian prion conversion and propagation. To this end we generated infectious materials that possess different conformational structures. Our methodology for the prion conversion of recPrP required only purified rec full-length mouse (Mo) PrP and common chemicals. Neither infected brain extracts nor amplified PrP(Sc) were used. Following two different in vitro protocols recMoPrP converted to amyloid fibrils without any seeding factor. Mouse hypothalamic GT1 and neuroblastoma N2a cell lines were infected with these amyloid preparations as fast screening methodology to characterize the infectious materials. Remarkably, a large number of amyloid preparations were able to induce the conformational change of endogenous PrPC to harbor several distinctive proteinase-resistant PrP forms. One such preparation was characterized in vivo habouring a synthetic prion with novel strain specified neuropathological and biochemical properties.


Subject(s)
Prion Diseases/pathology , Prions/chemistry , Prions/metabolism , Amino Acid Sequence , Amyloidogenic Proteins/chemistry , Animals , Blotting, Western , Cell Line , Disease Models, Animal , Mice , Microscopy, Atomic Force , Molecular Sequence Data , Prion Proteins , Prions/chemical synthesis , Protein Conformation , Protein Folding , Recombinant Proteins/chemical synthesis , Recombinant Proteins/chemistry
4.
BMC Neurosci ; 15: 69, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24898419

ABSTRACT

BACKGROUND: α-Synuclein (α-syn) plays a central role in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders that includes Parkinson disease, dementia with Lewy bodies and multiple system atrophy. Several findings from cell culture and mouse experiments suggest intercellular α-syn transfer. RESULTS: Through a methodology used to obtain synthetic mammalian prions, we tested whether recombinant human α-syn amyloids can promote prion-like accumulation in neuronal cell lines in vitro. A single exposure to amyloid fibrils of human α-syn was sufficient to induce aggregation of endogenous α-syn in human neuroblastoma SH-SY5Y cells. Remarkably, endogenous wild-type α-syn was sufficient for the formation of these aggregates, and overexpression of the protein was not required. CONCLUSIONS: Our results provide compelling evidence that endogenous α-syn can accumulate in cell culture after a single exposure to exogenous α-syn short amyloid fibrils. Importantly, using α-syn short amyloid fibrils as seed, endogenous α-syn aggregates and accumulates over several passages in cell culture, providing an excellent tool for potential therapeutic screening of pathogenic α-syn aggregates.


Subject(s)
Macromolecular Substances/metabolism , Neurons/metabolism , Prions/classification , Prions/metabolism , alpha-Synuclein/classification , alpha-Synuclein/metabolism , Animals , Cell Line , Humans , Mice
5.
Eur J Pharm Sci ; 180: 106311, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36273785

ABSTRACT

Two clinically approved anticancer drugs targeting BRAF in melanoma patients - dabrafenib (DAB) and vemurafenib (VEM) - have been successfully encapsulated into nanomicelles formed upon self-assembly of an amphiphilic dendrimer AD based on two C18 aliphatic chains and a G2 PAMAM head. The process resulted in the formation of well-defined (∼10 nm) core-shell nanomicelles (NMs) with excellent encapsulation efficiency (∼70% for DAB and ∼60% for VEM) and good drug loading capacity (∼27% and ∼24% for DAB and VEM, respectively). Dynamic light scattering (DLS), transmission electron microscopy (TEM), small-angle x-ray scattering (SAXS), nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC), and molecular simulation (MS) experiments were used, respectively, to determine the size and structure of the empty and drug-loaded nanomicelles (DLNMs), along with the interactions between the NMs and their cargoes. The in vitro release data revealed profiles governed by Fickian diffusion; moreover, for both anticancer molecules, an acidic environment (pH = 5.0) facilitated drug release with respect to physiological pH conditions (pH = 7.4). Finally, both DAB- and VEM-loaded NMs elicited enhanced response with respect to free drug treatments in 4 different melanoma cell lines.


Subject(s)
Melanoma , Micelles , Humans , Vemurafenib , Scattering, Small Angle , X-Ray Diffraction , Melanoma/drug therapy , Melanoma/pathology
6.
Pharmacol Ther ; 232: 108009, 2022 04.
Article in English | MEDLINE | ID: mdl-34619284

ABSTRACT

The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.


Subject(s)
BRCA1 Protein , Neoplasms , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , DNA Repair , Fellowships and Scholarships , Humans , Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
ACS Nano ; 15(4): 6929-6948, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33733740

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic, caused by the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), started in China during late 2019 and swiftly spread worldwide. Since COVID-19 emergence, many therapeutic regimens have been relentlessly explored, and although two vaccines have just received emergency use authorization by different governmental agencies, antiviral therapeutics based neutralizing antibodies and small-drug inhibitors can still be vital viable options to prevent and treat SARS-CoV-2 infections. The viral spike glycoprotein (S-protein) is the key molecular player that promotes human host cellular invasion via recognition of and binding to the angiotensin-converting enzyme 2 gene (ACE2). In this work, we report the results obtained by mutating in silico the 18 ACE2 residues and the 14 S-protein receptor binding domain (S-RBDCoV-2) residues that contribute to the receptor/viral protein binding interface. Specifically, each wild-type protein-protein interface residue was replaced by a hydrophobic (isoleucine), polar (serine and threonine), charged (aspartic acid/glutamic acid and lysine/arginine), and bulky (tryptophan) residue, respectively, in order to study the different effects exerted by nature, shape, and dimensions of the mutant amino acids on the structure and strength of the resulting binding interface. The computational results were next validated a posteriori against the corresponding experimental data, yielding an overall agreement of 92%. Interestingly, a non-negligible number of mis-sense variations were predicted to enhance ACE2/S-RBDCoV-2 binding, including the variants Q24T, T27D/K/W, D30E, H34S7T/K, E35D, Q42K, L79I/W, R357K, and R393K on ACE2 and L455D/W, F456K/W, Q493K, N501T, and Y505W on S-RBDCoV-2, respectively.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Binding Sites , China , Humans , Mutagenesis , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
8.
Methods Mol Biol ; 2282: 209-244, 2021.
Article in English | MEDLINE | ID: mdl-33928579

ABSTRACT

This chapter reviews the different techniques for analyzing the chemical-physical properties, transfection efficiency, cytotoxicity, and stability of covalent cationic dendrimers (CCDs) and self-assembled cationic dendrons (ACDs) for siRNA delivery in the presence and absence of their nucleic cargos. On the basis of the reported examples, a standard essential set of techniques is described for each step of a siRNA/nanovector (NV) complex characterization process: (1) analysis of the basic chemical-physical properties of the NV per se; (2) characterization of the morphology, size, strength, and stability of the siRNA/NV ensemble; (3) characterization and quantification of the cellular uptake and release of the siRNA fragment; (4) in vitro and (5) in vivo experiments for the evaluation of the corresponding gene silencing activity; and (6) assessment of the intrinsic toxicity of the NV and the siRNA/NV complex.


Subject(s)
Dendrimers/chemistry , RNA Interference , RNA, Small Interfering/genetics , RNAi Therapeutics , Transfection , Animals , Cations , Cell Line , Dendrimers/metabolism , Dendrimers/toxicity , Humans , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism
9.
Methods Mol Biol ; 2282: 267-296, 2021.
Article in English | MEDLINE | ID: mdl-33928581

ABSTRACT

Nowadays, computer simulations have been established as a fundamental tool in the design and development of new dendrimer-based nanocarriers for drug and gene delivery. Moreover, the level of detail contained in the information that can be gathered by performing atomistic-scale simulations cannot be obtained with any other available experimental technique. In this chapter we describe the main computational toolbox that can be exploited in the different stages of novel dendritic nanocarrier production-from the initial conception to the stage of biological intermolecular interactions.


Subject(s)
Dendrimers/chemistry , Molecular Dynamics Simulation , RNA Interference , RNA, Small Interfering/genetics , Transfection , Animals , Cations , Cell Line , Dendrimers/metabolism , Dendrimers/toxicity , Humans , Nanoparticles , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Research Design , Software , Workflow
10.
Sci Rep ; 11(1): 20274, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34642465

ABSTRACT

The purpose of this work is to provide an in silico molecular rationale of the role eventually played by currently circulating mutations in the receptor binding domain of the SARS-CoV-2 spike protein (S-RBDCoV­2) in evading the immune surveillance effects elicited by the two Eli Lilly LY-CoV555/bamlanivimab and LY-CoV016/etesevimab monoclonal antibodies. The main findings from this study show that, compared to the wild-type SARS-CoV-2 spike protein, mutations E484A/G/K/Q/R/V, Q493K/L/R, S494A/P/R, L452R and F490S are predicted to be markedly resistant to neutralization by LY-CoV555, while mutations K417E/N/T, D420A/G/N, N460I/K/S/T, T415P, and Y489C/S are predicted to confer LY-CoV016 escaping advantage to the viral protein. A challenge of our global in silico results against relevant experimental data resulted in an overall 90% agreement. Thus, the results presented provide a molecular-based rationale for all relative experimental findings, constitute a fast and reliable tool for identifying and prioritizing all present and newly reported circulating spike SARS-CoV-2 variants with respect to antibody neutralization, and yield substantial structural information for the development of next-generation vaccines and monoclonal antibodies more resilient to viral evolution.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antiviral Agents/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Humans , Protein Binding
11.
Methods Mol Biol ; 2282: 245-266, 2021.
Article in English | MEDLINE | ID: mdl-33928580

ABSTRACT

siRNAs are emerging as promising therapeutic agents due to their ability to inhibit specific genes in many diseases. However, these tools require specific vehicles in order to be safely delivered to the targeted site. Among different siRNA delivery systems, self-assembled nanomicelles based on amphiphilic cationic dendrons (ACDs) have recently outperformed nanovectors based on covalent carriers. This chapter describes how isothermal titration calorimetry (ITC) can be exploited as one of the best techniques to investigate the self-assembly process of ACDs. Specifically, ITC can provide, as such or via specific analysis methods, a full thermodynamic characterization of these nanomicelles, including their critical micellar concentration, micelle aggregation number, degree of counterion binding, Gibbs free energy of micellization, and its enthalpic and entropic components.


Subject(s)
Calorimetry , Dendrimers/chemistry , RNA Interference , RNA, Small Interfering/genetics , Transfection , Animals , Cations , Cell Line , Dendrimers/metabolism , Dendrimers/toxicity , Humans , Micelles , RNA, Small Interfering/chemistry , RNA, Small Interfering/metabolism , Research Design , Workflow
12.
ACS Nano ; 14(9): 11821-11830, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32833435

ABSTRACT

The recent emergence of the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent for the coronavirus disease 2019 (COVID-19), is causing a global pandemic that poses enormous challenges to global public health and economies. SARS-CoV-2 host cell entry is mediated by the interaction of the viral transmembrane spike glycoprotein (S-protein) with the angiotensin-converting enzyme 2 gene (ACE2), an essential counter-regulatory carboxypeptidase of the renin-angiotensin hormone system that is a critical regulator of blood volume, systemic vascular resistance, and thus cardiovascular homeostasis. Accordingly, this work reports an atomistic-based, reliable in silico structural and energetic framework of the interactions between the receptor-binding domain of the SARS-CoV-2 S-protein and its host cellular receptor ACE2 that provides qualitative and quantitative insights into the main molecular determinants in virus/receptor recognition. In particular, residues D38, K31, E37, K353, and Y41 on ACE2 and Q498, T500, and R403 on the SARS-CoV-2 S-protein receptor-binding domain are determined as true hot spots, contributing to shaping and determining the stability of the relevant protein-protein interface. Overall, these results could be used to estimate the binding affinity of the viral protein to different allelic variants of ACE2 receptors discovered in COVID-19 patients and for the effective structure-based design and development of neutralizing antibodies, vaccines, and protein/protein inhibitors against this terrible new coronavirus.


Subject(s)
Betacoronavirus/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Domains , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2 , COVID-19 , Computational Biology , Coronavirus Infections/metabolism , Humans , Pandemics , Pneumonia, Viral/metabolism , Protein Binding , Protein Conformation , SARS-CoV-2
13.
Pharmacol Ther ; 208: 107492, 2020 04.
Article in English | MEDLINE | ID: mdl-32001312

ABSTRACT

The maintenance of genome integrity is essential for any organism survival and for the inheritance of traits to offspring. To the purpose, cells have developed a complex DNA repair system to defend the genetic information against both endogenous and exogenous sources of damage. Accordingly, multiple repair pathways can be aroused from the diverse forms of DNA lesions, which can be effective per se or via crosstalk with others to complete the whole DNA repair process. Deficiencies in DNA healing resulting in faulty repair and/or prolonged DNA damage can lead to genes mutations, chromosome rearrangements, genomic instability, and finally carcinogenesis and/or cancer progression. Although it might seem paradoxical, at the same time such defects in DNA repair pathways may have therapeutic implications for potential clinical practice. Here we provide an overview of the main DNA repair pathways, with special focus on the role played by homologous repair and the RAD51 recombinase protein in the cellular DNA damage response. We next discuss the recombinase structure and function per se and in combination with all its principal mediators and regulators. Finally, we conclude with an analysis of the manifold roles that RAD51 plays in carcinogenesis, cancer progression and anticancer drug resistance, and conclude this work with a survey of the most promising therapeutic strategies aimed at targeting RAD51 in experimental oncology.


Subject(s)
DNA Repair , Neoplasms/enzymology , Neoplasms/genetics , Rad51 Recombinase/metabolism , Animals , DNA Damage , Drug Resistance, Neoplasm , Humans , Neoplasms/drug therapy
14.
Pharmaceutics ; 11(7)2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31295912

ABSTRACT

In part I of this review, the authors showed how poly(amidoamine) (PAMAM)-based dendrimers can be considered as promising delivering platforms for siRNA therapeutics. This is by virtue of their precise and unique multivalent molecular architecture, characterized by uniform branching units and a plethora of surface groups amenable to effective siRNA binding and delivery to e.g., cancer cells. However, the successful clinical translation of dendrimer-based nanovectors requires considerable amounts of good manufacturing practice (GMP) compounds in order to conform to the guidelines recommended by the relevant authorizing agencies. Large-scale GMP-standard high-generation dendrimer production is technically very challenging. Therefore, in this second part of the review, the authors present the development of PAMAM-based amphiphilic dendrons, that are able to auto-organize themselves into nanosized micelles which ultimately outperform their covalent dendrimer counterparts in in vitro and in vivo gene silencing.

15.
Biomolecules ; 9(8)2019 08 20.
Article in English | MEDLINE | ID: mdl-31434309

ABSTRACT

This review work reports a collection of coupled experimental/computational results taken from our own experience in the field of self-assembled dendrimers for heparin binding. These studies present and discuss both the potentiality played by this hybrid methodology to the design, synthesis, and development of possible protamine replacers for heparin anticoagulant activity reversal in biomedical applications, and the obstacles this field has still to overcome before these molecules can be translated into nanomedicines available in clinical settings.


Subject(s)
Dendrimers/chemistry , Heparin/chemistry , Nanoparticles/chemistry , Binding Sites , Heparin/blood , Humans
16.
Pharmaceutics ; 11(7)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31323863

ABSTRACT

Small interfering RNAs (siRNAs) represent a new approach towards the inhibition of gene expression; as such, they have rapidly emerged as promising therapeutics for a plethora of important human pathologies including cancer, cardiovascular diseases, and other disorders of a genetic etiology. However, the clinical translation of RNA interference (RNAi) requires safe and efficient vectors for siRNA delivery into cells. Dendrimers are attractive nanovectors to serve this purpose, as they present a unique, well-defined architecture and exhibit cooperative and multivalent effects at the nanoscale. This short review presents a brief introduction to RNAi-based therapeutics, the advantages offered by dendrimers as siRNA nanocarriers, and the remarkable results we achieved with bio-inspired, structurally flexible covalent dendrimers. In the companion paper, we next report our recent efforts in designing, characterizing and testing a series of self-assembled amphiphilic dendrimers and their related structural alterations to achieve unprecedented efficient siRNA delivery both in vitro and in vivo.

17.
Front Chem ; 7: 247, 2019.
Article in English | MEDLINE | ID: mdl-31041309

ABSTRACT

Human Respiratory Syncytial Virus (RSV) is the primary cause of bronchopneumonia in infants and children worldwide. Clinical studies have shown that early treatments of RSV patients with ribavirin improve prognosis, even if the use of this drug is limited due to myelosuppression and toxicity effects. Furthermore, effective vaccines to prevent RSV infection are currently unavailable. Thus, the development of highly effective and specific antiviral drugs for pre-exposure prophylaxis and/or treatment of RSV infections is a compelling need. In the quest of new RSV inhibitors, in this work we evaluated the antiviral activity of a series of variously substituted 5,6-dichloro-1-phenyl-1(2)H-benzo[d][1,2,3]triazole derivatives in cell-based assays. Several 1- and 2-phenyl-benzotriazoles resulted fairly potent (µM concentrations) inhibitors of RSV infection in plaque reduction assays, accompanied by low cytotoxicity in human highly dividing T lymphoid-derived cells and primary cell lines. Contextually, no inhibitory effects were observed against other RNA or DNA viruses assayed, suggesting specific activity against RSV. Further results revealed that the lead compound 10d was active during the early phase of the RSV infection cycle. To understand whether 10d interfered with virus attachment to target cells or virus-cell fusion events, inhibitory activity tests against the RSV mutant strain B1 cp-52-expressing only the F envelope glycoprotein-and a plasmid-based reporter assay that quantifies the bioactivity of viral entry were also performed. The overall biological results, in conjunction with in silico modeling studies, supported the conclusion that the RSV fusion process could be the target of this new series of compounds.

18.
Eur J Med Chem ; 161: 399-415, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30384044

ABSTRACT

A number of new F-triazolequinolones (FTQs) and alkoxy-triazolequinolones (ATQs) were designed, synthesized and evaluated for their activity against Mycobacterium tuberculosis H37Rv. Five out of 21 compounds exhibited interesting minimum inhibitory concentration (MIC) values (6.6-57.9 µM), ATQs generally being more potent than FTQs. Two ATQs, 21a and 30a, were endowed with the best anti-Mtb potency (MIC = 6.9 and 6.6 µM, respectively), and were not cytotoxic in a Vero cell line. Tested for activity against M. tuberculosis DNA gyrase in a DNA supercoiling activity assay, 21a and 30a showed IC50 values (27-28 µM) comparable to that of ciprofloxacin (10.6 µM). 21a was next selected for screening against several Mtb strains obtained from clinical isolates, including multi-drug-resistant (MDR) variants. Importantly, this compound was effective in all cases, with very promising MIC values (4 µM) in the case of some isoniazid/rifampicin-resistant Mtb strains. Finally, computer-based simulations revealed that the binding mode of 21a in the Mtb gyrase cleavage core complexed with DNA and the relevant network of intermolecular interactions are utterly similar to those described for ciprofloxacin, yielding a molecular rationale for the comparable anti-mycobacterial and DNA gyrase inhibition activity of this quinolone.


Subject(s)
Antifungal Agents/pharmacology , Antitubercular Agents/pharmacology , DNA Gyrase/metabolism , Mycobacterium tuberculosis/drug effects , Quinolones/pharmacology , Topoisomerase II Inhibitors/pharmacology , Animals , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Design , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/enzymology , Quinolones/chemical synthesis , Quinolones/chemistry , Saccharomyces cerevisiae/drug effects , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Vero Cells
19.
Sci Rep ; 7(1): 10050, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855681

ABSTRACT

The precise molecular mechanism of how misfolded α-synuclein (α-Syn) accumulates and spreads in synucleinopathies is still unknown. Here, we show the role of the cellular prion protein (PrPC) in mediating the uptake and the spread of recombinant α-Syn amyloids. The in vitro data revealed that the presence of PrPC fosters the higher uptake of α-Syn amyloid fibrils, which was also confirmed in vivo in wild type (Prnp +/+) compared to PrP knock-out (Prnp -/-) mice. Additionally, the presence of α-Syn amyloids blocked the replication of scrapie prions (PrPSc) in vitro and ex vivo, indicating a link between the two proteins. Indeed, whilst PrPC is mediating the internalization of α-Syn amyloids, PrPSc is not able to replicate in their presence. This observation has pathological relevance, since several reported case studies show that the accumulation of α-Syn amyloid deposits in Creutzfeldt-Jakob disease patients is accompanied by a longer disease course.


Subject(s)
Amyloid/metabolism , Brain/pathology , Creutzfeldt-Jakob Syndrome/metabolism , Neurons/metabolism , Prion Proteins/metabolism , alpha-Synuclein/metabolism , Amyloid/administration & dosage , Amyloid/genetics , Animals , Brain/metabolism , Cell Line, Tumor , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/pathology , Endopeptidase K/chemistry , Gene Expression Regulation , Humans , Injections, Intraventricular , Mice , Mice, Knockout , Neurons/pathology , Prion Proteins/genetics , Protein Binding , Protein Transport , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Stereotaxic Techniques , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/genetics
20.
Oncotarget ; 8(34): 56158-56167, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28915580

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. GISTs express the receptor tyrosine kinase KIT, and the majority of GISTs present KIT gain-of-function mutations that cluster in the 5' end of the receptor juxtamembrane domain. On the other hand, little information is known about GISTs carrying mutations in the 3' end of the KIT juxtamembrane domain. Here we report and discuss a clinical case of localized duodenal GIST whose molecular characterization revealed the presence of a new 21 nucleotide/7 amino acid deletion in the 3' end of KIT juxtamembrane domain (Δ574-580). The patient was treated with Imatinib at standard regimen dose (400 mg/day), and responded well as the original tumor mass reduced, ultimately allowing conservative surgery. In line with these clinical evidences computer simulations, biophysical techniques and in vitro experiments demonstrated that the receptor tyrosine kinase KIT carrying the Δ574-580 mutation displays constitutive phosphorylation, which can be switched-off upon Imatinib treatment. In addition, results from this study showed that a clinical useful procedure, neoadjuvant treatment, can occasionally be of value for the understanding of the molecular pathogenesis of GIST.

SELECTION OF CITATIONS
SEARCH DETAIL