Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Affiliation country
Publication year range
1.
J Transl Med ; 22(1): 151, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38351008

ABSTRACT

BACKGROUND: Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Although the overall survival of patients with NB has improved in the last years, more than 50% of high-risk patients still undergo a relapse. Thus, in the era of precision/personalized medicine, the need for high-risk NB patient-specific therapies is urgent. METHODS: Within the PeRsonalizEd Medicine (PREME) program, patient-derived NB tumors and bone marrow (BM)-infiltrating NB cells, derived from either iliac crests or tumor bone lesions, underwent to histological and to flow cytometry immunophenotyping, respectively. BM samples containing a NB cells infiltration from 1 to 50 percent, underwent to a subsequent NB cells enrichment using immune-magnetic manipulation. Then, NB samples were used for the identification of actionable targets and for the generation of 3D/tumor-spheres and Patient-Derived Xenografts (PDX) and Cell PDX (CPDX) preclinical models. RESULTS: Eighty-four percent of NB-patients showed potentially therapeutically targetable somatic alterations (including point mutations, copy number variations and mRNA over-expression). Sixty-six percent of samples showed alterations, graded as "very high priority", that are validated to be directly targetable by an approved drug or an investigational agent. A molecular targeted therapy was applied for four patients, while a genetic counseling was suggested to two patients having one pathogenic germline variant in known cancer predisposition genes. Out of eleven samples implanted in mice, five gave rise to (C)PDX, all preserved in a local PDX Bio-bank. Interestingly, comparing all molecular alterations and histological and immunophenotypic features among the original patient's tumors and PDX/CPDX up to second generation, a high grade of similarity was observed. Notably, also 3D models conserved immunophenotypic features and molecular alterations of the original tumors. CONCLUSIONS: PREME confirms the possibility of identifying targetable genomic alterations in NB, indeed, a molecular targeted therapy was applied to four NB patients. PREME paves the way to the creation of clinically relevant repositories of faithful patient-derived (C)PDX and 3D models, on which testing precision, NB standard-of-care and experimental medicines.


Subject(s)
DNA Copy Number Variations , Neuroblastoma , Infant , Humans , Animals , Mice , Neoplasm Recurrence, Local , Neuroblastoma/genetics , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Disease Models, Animal , Flow Cytometry
2.
Soft Matter ; 20(4): 773-787, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38165831

ABSTRACT

Gelatin methacryloyl (GelMA) is a widely used semi-synthetic polymer for a variety of bioapplications. However, the development of versatile GelMA hydrogels requires tuning of their microstructure. Herein, we report the possibility of preparing hydrogels with various microstructures under shear from an aqueous two-phase system (ATPS) consisting of GelMA and dextran. The influence of an applied preshear on dextran/GelMA droplets and bicontinuous systems is investigated by rheology that allows the application of a constant shear and is immediately followed by in situ UV-curing of the GelMA-rich phase. The microstructure of the resulting hydrogels is examined by confocal laser scanning microscopy (CLSM). The results show that the GelMA string phase and GelMA hydrogels with aligned bands can be formed depending on the concentration of dextran and the applied preshear. The influence of the pH of the ATPS is investigated and demonstrates the formation of multiple emulsions upon decreasing the charge density of GelMA. The preshearing of multiple emulsions, following gelation, leads to the formation of porous GelMA microgels. The diversity of the formed structures highlights the application potential of preshearing ATPS in the development of functional soft materials.

3.
Int J Mol Sci ; 25(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338881

ABSTRACT

The RNA-binding protein LIN28B, identified as an independent risk factor in high-risk neuroblastoma patients, is implicated in adverse treatment outcomes linked to metastasis and chemoresistance. Despite its clinical significance, the impact of LIN28B on neuroblastoma cell metabolism remains unexplored. This study employs a multi-omics approach, integrating transcriptome and metabolome data, to elucidate the global metabolic program associated with varying LIN28B expression levels over time. Our findings reveal that escalating LIN28B expression induces a significant metabolic rewiring in neuroblastoma cells. Specifically, LIN28B prompts a time-dependent increase in the release rate of metabolites related to the glutathione and aminoacyl-tRNA biosynthetic pathways, concomitant with a reduction in glucose uptake. These results underscore the pivotal role of LIN28B in governing neuroblastoma cell metabolism and suggest a potential disruption in the redox balance of LIN28B-bearing cells. This study offers valuable insights into the molecular mechanisms underlying LIN28B-associated adverse outcomes in neuroblastoma, paving the way for targeted therapeutic interventions.


Subject(s)
MicroRNAs , Neuroblastoma , Humans , MicroRNAs/genetics , Multiomics , Neuroblastoma/metabolism , Transcriptome , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
4.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732012

ABSTRACT

Neuroblastoma (NB) is the most commonly diagnosed extracranial solid tumor in children, accounting for 15% of all childhood cancer deaths. Although the 5-year survival rate of patients with a high-risk disease has increased in recent decades, NB remains a challenge in pediatric oncology, and the identification of novel potential therapeutic targets and agents is an urgent clinical need. The RNA-binding protein LIN28B has been identified as an oncogene in NB and is associated with a poor prognosis. Given that LIN28B acts by negatively regulating the biogenesis of the tumor suppressor let-7 miRNAs, we reasoned that selective interference with the LIN28B/let-7 miRNA interaction would increase let-7 miRNA levels, ultimately leading to reduced NB aggressiveness. Here, we selected (-)-epigallocatechin 3-gallate (EGCG) out of 4959 molecules screened as the molecule with the best inhibitory activity on LIN28B/let-7 miRNA interaction and showed that treatment with PLC/PLGA-PEG nanoparticles containing EGCG (EGCG-NPs) led to an increase in mature let-7 miRNAs and a consequent inhibition of NB cell growth. In addition, EGCG-NP pretreatment reduced the tumorigenic potential of NB cells in vivo. These experiments suggest that the LIN28B/let-7 miRNA axis is a good therapeutic target in NB and that EGCG, which can interfere with this interaction, deserves further preclinical evaluation.


Subject(s)
Catechin , MicroRNAs , Neuroblastoma , RNA-Binding Proteins , Catechin/analogs & derivatives , Catechin/pharmacology , Neuroblastoma/genetics , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/drug therapy , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mice, Nude
5.
Small ; 19(44): e2208089, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37403299

ABSTRACT

The restricted porosity of most hydrogels established for in vitro 3D tissue engineering applications limits embedded cells with regard to their physiological spreading, proliferation, and migration behavior. To overcome these confines, porous hydrogels derived from aqueous two-phase systems (ATPS) are an interesting alternative. However, while developing hydrogels with trapped pores is widespread, the design of bicontinuous hydrogels is still challenging. Herein, an ATPS consisting of photo-crosslinkable gelatin methacryloyl (GelMA) and dextran is presented. The phase behavior, monophasic or biphasic, is tuned via the pH and dextran concentration. This, in turn, allows the formation of hydrogels with three distinct microstructures: homogenous nonporous, regular disconnected-pores, and bicontinuous with interconnected-pores. The pore size of the latter two hydrogels can be tuned from ≈4 to 100 µm. Cytocompatibility of the generated ATPS hydrogels is confirmed by testing the viability of stromal and tumor cells. Their distribution and growth pattern are cell-type specific but are also strongly defined by the microstructure of the hydrogel. Finally, it is demonstrated that the unique porous structure is sustained when processing the bicontinuous system by inkjet and microextrusion techniques. The proposed ATPS hydrogels hold great potential for 3D tissue engineering applications due to their unique tunable interconnected porosity.


Subject(s)
Biocompatible Materials , Dextrans , Biocompatible Materials/chemistry , Gelatin/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Methacrylates , Tissue Scaffolds/chemistry , Printing, Three-Dimensional
6.
J Cell Mol Med ; 25(18): 9060-9065, 2021 09.
Article in English | MEDLINE | ID: mdl-34402163

ABSTRACT

BCL2-associated athanogene-1 (BAG1) is a multi-functional protein that is found deregulated in several solid cancers and in paediatric acute myeloid leukaemia. The investigation of BAG1 isoforms expression and intracellular localization in B-cell acute lymphoblastic leukaemia (B-ALL) patient-derived specimens revealed that BAG1 levels decrease during disease remission, compared to diagnosis, but drastically increase at relapse. In particular, at diagnosis both BAG1-L and BAG1-M isoforms are mainly nuclear, while during remission the localization pattern changes, having BAG1-M almost exclusively in the cytosol indicating its potential cytoprotective role in B-ALL. In addition, knockdown of BAG1/BAG3 induces cell apoptosis and G1-phase cell cycle arrest and, more intriguingly, shapes cell response to chemotherapy. BAG1-depleted cells show an increased sensitivity to the common chemotherapeutic agents, dexamethasone or daunorubicin, and to the BCL2 inhibitor ABT-737. Moreover, the BAG1 inhibitor Thio-2 induces a cytotoxic effect on RS4;11 cells both in vitro and in a zebrafish xenograft model and strongly synergizes with pan-BCL inhibitors. Collectively, these data sustain BAG1 deregulation as a critical event in assuring survival advantage to B-ALL cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Transcription Factors/metabolism , Antineoplastic Agents , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Primary Cell Culture , Tumor Cells, Cultured
7.
Cancer Cell Int ; 18: 63, 2018.
Article in English | MEDLINE | ID: mdl-29713246

ABSTRACT

BACKGROUND: A growing field of evidence suggests the involvement of oncogenic receptor tyrosine kinases (RTKs) in cell transformation. Deregulated activity of RTKs in tumors can determine disease progression and therapeutic responses in several types of cancer, including neuroblastoma (NB). Therefore, RTKs targeting is a worthwhile challenge for the oncologists. Nevertheless, acquired resistance to RTK inhibitors (RTKi) remains a serious problem. Autophagy activation is among the possible obstacles for good efficacy of the therapy with RTKi. METHODS: Under different treatment conditions we measured autophagic flux using immunoblot and immunofluorescence assays. Death induction was validated by trypan blue exclusion assay and FACS analysis (calcein-AM/propidium iodide). The NB cell lines SH-SY5Y and Kelly were used for the in vitro study. RESULTS: In order to define whether autophagy might be a limiting factor for the efficacy of RTKi in NB cells, we firstly checked its activation following the treatment with several RTKi. Next, we investigated the possibility to increase their therapeutic efficiency by combining RTKi with autophagy blocking agents in vitro. We exploited the effectiveness of three RTKi either alone or in combination with autophagy inhibitors (Chloroquine-CQ and Spautin-1). We demonstrated that autophagy induction was drug-dependent, and that its inhibition increased the anti-tumor activity of a single RTKi unevenly. We observed that the combined use of blocking agents which impair late autophagy events, such as CQ, and RTKi can be more effective with respect to the use of RTKi alone. CONCLUSIONS: In the present report, we assessed the conditions under which autophagy is activated during the use of different RTKi currently in the pre-clinical evaluation for NB. We summarized the achievements of combined RTK/autophagy inhibitors treatment as a promising approach to enhance the efficacy of RTKi in impairing tumor cells viability.

8.
J Biomed Sci ; 24(1): 14, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28178969

ABSTRACT

Neuroblastoma is an embryonic malignancy of early childhood originating from neural crest cells and showing heterogeneous biological, morphological, genetic and clinical characteristics. The correct stratification of neuroblastoma patients within risk groups (low, intermediate, high and ultra-high) is critical for the adequate treatment of the patients.High-throughput technologies in the Omics disciplines are leading to significant insights into the molecular pathogenesis of neuroblastoma. Nonetheless, further study of Omics data is necessary to better characterise neuroblastoma tumour biology. In the present review, we report an update of compounds that are used in preclinical tests and/or in Phase I-II trials for neuroblastoma. Furthermore, we recapitulate a number of compounds targeting proteins associated to neuroblastoma: MYCN (direct and indirect inhibitors) and downstream targets, Trk, ALK and its downstream signalling pathways. In particular, for the latter, given the frequency of ALK gene deregulation in neuroblastoma patients, we discuss on second-generation ALK inhibitors in preclinical or clinical phases developed for the treatment of neuroblastoma patients resistant to crizotinib.We summarise how Omics drive clinical trials for neuroblastoma treatment and how much the research of biological targets is useful for personalised medicine. Finally, we give an overview of the most recent druggable targets selected by Omics investigation and discuss how the Omics results can provide us additional advantages for overcoming tumour drug resistance.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Delivery Systems/methods , Drug Resistance, Neoplasm , Genomics , Neoplasm Proteins , Neuroblastoma , Pyrazoles/therapeutic use , Pyridines/therapeutic use , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Crizotinib , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism
9.
Blood ; 124(2): 263-72, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-24695851

ABSTRACT

A rare location, t(6;11)(q27;q23) (MLL-AF6), is associated with poor outcome in childhood acute myeloid leukemia (AML). The described mechanism by which MLL-AF6, through constitutive self-association and in cooperation with DOT-1L, activates aberrant gene expression does not explain the biological differences existing between t(6;11)-rearranged and other MLL-positive patients nor their different clinical outcome. Here, we show that AF6 is expressed in the cytoplasm of healthy bone marrow cells and controls rat sarcoma viral oncogene (RAS)-guanosine triphosphate (GTP) levels. By contrast, in MLL-AF6-rearranged cells, AF6 is found localized in the nucleus, leading to aberrant activation of RAS and of its downstream targets. Silencing MLL-AF6, we restored AF6 localization in the cytoplasm, thus mediating significant reduction of RAS-GTP levels and of cell clonogenic potential. The rescue of RAS-GTP levels after MLL-AF6 and AF6 co-silencing confirmed that MLL-AF6 oncoprotein potentiates the activity of the RAS pathway through retention of AF6 within the nucleus. Exposure of MLL-AF6-rearranged AML blasts to tipifarnib, a RAS inhibitor, leads to cell autophagy and apoptosis, thus supporting RAS targeting as a novel potential therapeutic strategy in patients carrying t(6;11). Altogether, these data point to a novel role of the MLL-AF6 chimera and show that its gene partner, AF6, is crucial in AML development.


Subject(s)
Cell Nucleus/metabolism , Kinesins/metabolism , Leukemia, Myeloid , Myeloid-Lymphoid Leukemia Protein/metabolism , Myosins/metabolism , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Child , Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 6 , Gene Silencing , Humans , Kinesins/genetics , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Leukemia, Myeloid/pathology , Myeloid-Lymphoid Leukemia Protein/genetics , Myosins/genetics , Oncogene Proteins, Fusion/genetics , Protein Transport , Transcriptional Activation , Translocation, Genetic
10.
Cancer Cell Int ; 16: 62, 2016.
Article in English | MEDLINE | ID: mdl-27486382

ABSTRACT

A growing field of evidence suggests the involvement of oncogenic receptor tyrosine kinases (RTKs) in the transformation of malignant cells. Constitutive and abnormal activation of RTKs may occur in tumors either through hyperactivation of mutated RTKs or via functional upregulation by RTK-coding gene amplification. In several types of cancer prognosis and therapeutic responses were found to be associated with deregulated activation of one or more RTKs. Therefore, targeting various RTKs remains a significant challenge in the treatment of patients with diverse malignancies. However, a frequent issue with the use of RTK inhibitors is drug resistance. Autophagy activation during treatment with RTK inhibitors has been commonly observed as an obstacle to more efficacious therapy and has been associated with the limited efficacy of RTK inhibitors. In the present review, we discuss autophagy activation after the administration of RTK inhibitors and summarize the achievements of combination RTK/autophagy inhibitor therapy in overcoming the reported resistance to RTK inhibitors in a growing number of cancers.

11.
Cancer Cell Int ; 16: 82, 2016.
Article in English | MEDLINE | ID: mdl-27822138

ABSTRACT

Neuroblastoma is a tumor arising in the peripheral sympathetic nervous system and is the most common cancer in childhood. Since most of the cellular and molecular mechanisms underlying neuroblastoma onset and progression remain unknown, the generation of new in vivo models might be appropriate to better dissect the peripheral sympathetic nervous system development in both physiological and disease states. This review is focused on the use of zebrafish as a suitable and innovative model to study neuroblastoma development. Here, we briefly summarize the current knowledge about zebrafish peripheral sympathetic nervous system formation, focusing on key genes and cellular pathways that play a crucial role in the differentiation of sympathetic neurons during embryonic development. In addition, we include examples of how genetic changes known to be associated with aggressive neuroblastoma can mimic this malignancy in zebrafish. Thus, we note the value of the zebrafish model in the field of neuroblastoma research, showing how it can improve our current knowledge about genes and biological pathways that contribute to malignant transformation and progression during embryonic life.

12.
J Biomed Mater Res B Appl Biomater ; 112(7): e35444, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38923270

ABSTRACT

Despite recent advances in the field of tissue engineering, the development of complex tissue-like structures in vitro is compromised by the lack of integration of a functioning vasculature. In this study, we propose a mesoscale three-dimensional (3D) in vitro vascularized connective tissue model and demonstrate its feasibility to prompt the self-assembly of endothelial cells into vessel-like structures. Moreover, we investigate the effect of perfusion on the organization of the cells. For this purpose, primary endothelial cells (HUVECs) and a cell line of human foreskin fibroblasts are cultivated in ECM-like matrices made up of freeze-dried collagen scaffolds permeated with collagen type I hydrogel. A tailored bioreactor is designed to investigate the effect of perfusion on self-organization of HUVECs. Immunofluorescent staining, two-photon microscopy, second-harmonic generation imaging, and scanning electron microscopy are applied to visualize the spatial arrangement of the cells. The analyses reveal the formation of hollow, vessel-like structures of HUVECs in hydrogel-permeated collagen scaffolds under both static and dynamic conditions. In conclusion, we demonstrate the feasibility of a 3D porous collagen scaffolding system that enables and maintains the self-organization of HUVECs into vessel-like structures independent of a dynamic flow.


Subject(s)
Human Umbilical Vein Endothelial Cells , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Human Umbilical Vein Endothelial Cells/metabolism , Porosity , Tissue Engineering , Collagen/chemistry , Fibroblasts/cytology , Fibroblasts/metabolism , Hydrogels/chemistry , Bioreactors
13.
Macromol Biosci ; 24(2): e2300162, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37716014

ABSTRACT

Collagen-type I gels are widely used for the fabrication of 3D in vitro gingival models. Unfortunately, their long-term stability is low, which limits the variety of in vitro applications. To overcome this problem and achieve better hydrolytic stability of 3D gingival models, fibrin-based hydrogel blends with increased long-term stability in vitro are investigated. Two different fibrin-based hydrogels are tested: fibrin 2.5% (w/v) and fibrin 1% (w/v)/gelatin 5% (w/v). Appropriate numbers of primary human gingival fibroblasts (HGFs) and OKG4/bmi1/TERT (OKG) keratinocytes are optimized to achieve a homogeneous distribution of cells under the assumed 3D conditions. Both hydrogels support the viability of HGFs and the stability of the hydrogel over 28 days. In vitro cultivation at the air-liquid interface triggers keratinization of the epithelium and increases its thickness, allowing the formation of multiple tissue-like layers. The presence of HGFs in the hydrogel further enhances epithelial differentiation. In conclusion, a fibrin-based 3D gingival model mimics the histology of native gingiva in vitro and ensures its long-term stability in comparison with the previously reported collagen paralogs. These results open new perspectives for extending the period within which specific biological or pathological conditions of artificial gingival tissue can be evaluated.


Subject(s)
Fibrin , Gingiva , Humans , Collagen , Collagen Type I , Hydrogels/pharmacology , Fibroblasts , Tissue Engineering/methods
14.
Nanotheranostics ; 8(1): 1-11, 2024.
Article in English | MEDLINE | ID: mdl-38164505

ABSTRACT

In vitro metastatic models are foreseen to introduce a breakthrough in the field of preclinical screening of more functional small-molecule pharmaceuticals and biologics. To achieve this goal, the complexity of current in vitro systems requests an appropriate upgrade to approach the three-dimensional (3D) in vivo metastatic disease. Here, we explored the potential of our 3D ß-tricalcium phosphate (ß-TCP) model of neuroblastoma bone metastasis for drug toxicity assessment. Tailor-made scaffolds with interconnected channels were produced by combining 3D printing and slip casting method. The organization of neuroblastoma cells into a mesenchymal stromal cell (MSC) network, cultured under bioactive conditions provided by ß-TCP, was monitored by two-photon microscopy. Deposition of extracellular matrix protein Collagen I by MSCs and persistent growth of tumor cells confirmed the cell-supportive performance of our 3D model. When different neuroblastoma cells were treated with conventional chemotherapeutics, the ß-TCP model provided the necessary reproducibility and accuracy of experimental readouts. Drug efficacy evaluation was done for 3D and 2D cell cultures, highlighting the need for a higher dose of chemotherapeutics under 3D conditions to achieve the expected cytotoxicity in tumor cells. Our results confirm the importance of 3D geometry in driving native connectivity between nonmalignant and tumor cells and sustain ß-TCP scaffolds as a reliable and affordable drug screening platform for use in the early stages of drug discovery.


Subject(s)
Neuroblastoma , Tissue Scaffolds , Humans , Osteogenesis , Reproducibility of Results , Neuroblastoma/drug therapy , Neuroblastoma/pathology
15.
Adv Healthc Mater ; 13(16): e2304243, 2024 06.
Article in English | MEDLINE | ID: mdl-38417028

ABSTRACT

Plant virus nanoparticles (VNPs) genetically engineered to present osteogenic cues provide a promising method for biofunctionalizing hydrogels in bone tissue engineering. Flexible Potato virus X (PVX) nanoparticles substantially enhance the attachment and differentiation of human mesenchymal stem cells (hMSCs) by presenting the RGD motif, hydroxyapatite-binding peptide (HABP), or consecutive polyglutamates (E8) in a concentration-dependent manner. Therefore, it is hypothesized that Tobacco mosaic virus nanoparticles, which present 1.6 times more functional peptides than PVX, will meliorate such an impact. This study hypothesizes that cultivating hMSCs on a surface coated with a combination of two VNPs presenting peptides for either cell attachment or mineralization can achieve additionally enhancing effects on osteogenesis. Calcium minerals deposited by differentiating hMSCs increases two to threefold for this combination, while the Alkaline Phosphatase activity of hMSCs grown on the PVX-RGD/PVX-HABP-coated surface significantly surpasses any other VNP combination. Superior additive effects are observed for the first time by employing a combination of VNPs with varying functionalities. It is found that the flexible VNP geometry plays a more critical role than the concentration of functional peptides. In conclusion, various peptide-presenting plant VNPs exhibit an additive enhancing effect offering significant potential for effectively functionalizing cell-containing hydrogels in bone tissue engineering.


Subject(s)
Mesenchymal Stem Cells , Nanoparticles , Osteogenesis , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Humans , Nanoparticles/chemistry , Potexvirus/chemistry , Cell Differentiation/drug effects , Tobacco Mosaic Virus/chemistry , Tissue Engineering/methods , Hydrogels/chemistry , Oligopeptides/chemistry , Oligopeptides/pharmacology
16.
Int J Bioprint ; 9(4): 743, 2023.
Article in English | MEDLINE | ID: mdl-37323496

ABSTRACT

It is well known that in microvalve-based bioprinting, the cells are subjected to wall shear stress, which can negatively affect their viability rate. We hypothesized that the wall shear stress during impingement at the building platform, hitherto not considered in microvalve-based bioprinting, can be even more critical for the processed cells than the wall shear stress inside the nozzle. To test our hypothesis, we used fluid mechanics numerical simulation based on finite volume method. In addition, viability of two functionally different cell types, HaCaT cell line and primary human umbilical vein endothelial cells (HUVECs), embedded in the cellladen hydrogel was assessed after bioprinting. Simulation results revealed that at low upstream pressure the kinetic energy was not sufficient to overcome the interfacial force for droplet formation and detachment. Oppositely, at relatively mid upstream pressure, a droplet and a ligament were formed, whereas at higher upstream pressure, a jet was formed between nozzle and platform. In the case of jet formation, the shear stress during impingement can exceed the wall shear stress in the nozzle. The amplitude of impingement shear stress depended on nozzle-to- platform distance. This was confirmed by evaluating cell viability which revealed an increase of up to 10% when increasing the nozzle-to-platform distance from 0.3 to 3 mm. In conclusion, the impingement-related shear stress can exceed the wall shear stress in the nozzle in microvalve-based bioprinting. However, this critical issue can be successfully addressed by adapting the distance between the nozzle and the building platform. Altogether, our results highlight impingement-related shear stress as another essential parameter to consider in devising bioprinting strategies.

17.
Biochem Pharmacol ; 215: 115696, 2023 09.
Article in English | MEDLINE | ID: mdl-37481138

ABSTRACT

Cell motility is a crucial biological process that plays a critical role in the development of multicellular organisms and is essential for tissue formation and regeneration. However, uncontrolled cell motility can lead to the development of various diseases, including neoplasms. In this review, we discuss recent advances in the discovery of regulatory mechanisms underlying the metastatic spread of neuroblastoma, a solid pediatric tumor that originates in the embryonic migratory cells of the neural crest. The highly motile phenotype of metastatic neuroblastoma cells requires targeting of intracellular and extracellular processes, that, if affected, would be helpful for the treatment of high-risk patients with neuroblastoma, for whom current therapies remain inadequate. Development of new potentially migration-inhibiting compounds and standardized preclinical approaches for the selection of anti-metastatic drugs in neuroblastoma will also be discussed.


Subject(s)
Neoplasm Metastasis , Neuroblastoma , Humans , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/pathology
18.
Mater Today Bio ; 19: 100596, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36910273

ABSTRACT

A key challenge for the discovery of novel molecular targets and therapeutics against pediatric bone metastatic disease is the lack of bona fide in vitro cell models. Here, we show that a beta-tricalcium phosphate (ß-TCP) multicellular 3D in vitro bone microtissue model reconstitutes key phenotypic and transcriptional patterns of native metastatic tumor cells while promoting their stemness and proinvasive features. Comparing planar with interconnected channeled scaffolds, we identified geometry as a dominant orchestrator of proangiogenic traits in neuroblastoma tumor cells. On the other hand, the ß-TCP-determined gene signature was DNA replication related. Jointly, the geometry and chemical impact of ß-TCP revealed a prometastatic landscape of the engineered tumor microenvironment. The proposed 3D multicellular in vitro model of pediatric bone metastatic disease may advance further analysis of the molecular, genetic and metabolic bases of the disease and allow more efficient preclinical target validations.

19.
Adv Healthc Mater ; 12(30): e2301422, 2023 12.
Article in English | MEDLINE | ID: mdl-37703581

ABSTRACT

During orthodontic tooth movement (OTM), the periodontal ligament (PDL) plays a crucial role in regulating the tissue remodeling process. To decipher the cellular and molecular mechanisms underlying this process in vitro, suitable 3D models are needed that more closely approximate the situation in vivo. Here, a customized bioreactor is developed that allows dynamic loading of PDL-derived fibroblasts (PDLF). A collagen-based hydrogel mixture is optimized to maintain structural integrity and constant cell growth during stretching. Numerical simulations show a uniform stress distribution in the hydrogel construct under stretching. Compared to static conditions, controlled cyclic stretching results in directional alignment of collagen fibers and enhances proliferation and spreading ability of the embedded PDLF cells. Effective force transmission to the embedded cells is demonstrated by a more than threefold increase in Periostin protein expression. The cyclic stretch conditions also promote extensive remodeling of the extracellular matrix, as confirmed by increased glycosaminoglycan production. These results highlight the importance of dynamic loading over an extended period of time to determine the behavior of PDLF and to identify in vitro mechanobiological cues triggered during OTM-like stimulus. The introduced dynamic bioreactor is therefore a useful in vitro tool to study these mechanisms.


Subject(s)
Extracellular Matrix , Periodontal Ligament , Periodontal Ligament/physiology , Extracellular Matrix/metabolism , Collagen/metabolism , Bioreactors , Hydrogels/pharmacology , Hydrogels/metabolism , Stress, Mechanical
20.
Biomater Adv ; 147: 213329, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36801795

ABSTRACT

During nozzle-based bioprinting, like inkjet and microextrusion, cells are subjected to hydrostatic pressure for up to several minutes. The modality of the bioprinting-related hydrostatic pressure is either constant or pulsatile depending on the technique. We hypothesized that the difference in the modality of hydrostatic pressure affects the biological response of the processed cells differently. To test this, we used a custom-made setup to apply either controlled constant or pulsatile hydrostatic pressure on endothelial and epithelial cells. Neither bioprinting procedure visibly altered the distribution of selected cytoskeletal filaments, cell-substrate adhesions, and cell-cell contacts in either cell type. In addition, pulsatile hydrostatic pressure led to an immediate increase of intracellular ATP in both cell types. However, the bioprinting-associated hydrostatic pressure triggered a pro-inflammatory response in only the endothelial cells, with an increase of interleukin 8 (IL-8) and a decrease of thrombomodulin (THBD) transcripts. These findings demonstrate that the settings adopted during nozzle-based bioprinting cause hydrostatic pressure that can trigger a pro-inflammatory response in different barrier-forming cell types. This response is cell-type and pressure-modality dependent. The immediate interaction of the printed cells with native tissue and the immune system in vivo might potentially trigger a cascade of events. Our findings, therefore, are of major relevance in particular for novel intra-operative, multicellular bioprinting approaches.


Subject(s)
Bioprinting , Endothelial Cells , Bioprinting/methods , Hydrostatic Pressure , Epithelial Cells , Cell Adhesion
SELECTION OF CITATIONS
SEARCH DETAIL