Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Genet ; 19(7): e1010646, 2023 07.
Article in English | MEDLINE | ID: mdl-37498819

ABSTRACT

The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Cross Infection , Humans , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Phylogeny , Cross Infection/microbiology , Acinetobacter Infections/microbiology , Hospitals , Anti-Bacterial Agents
2.
PLoS Genet ; 18(6): e1010020, 2022 06.
Article in English | MEDLINE | ID: mdl-35653398

ABSTRACT

Nosocomial pathogens of the Acinetobacter calcoaceticus-baumannii (ACB) complex are a cautionary example for the world-wide spread of multi- and pan-drug resistant bacteria. Aiding the urgent demand for novel therapeutic targets, comparative genomics studies between pathogens and their apathogenic relatives shed light on the genetic basis of human-pathogen interaction. Yet, existing studies are limited in taxonomic scope, sensing of the phylogenetic signal, and resolution by largely analyzing genes independent of their organization in functional gene clusters. Here, we explored more than 3,000 Acinetobacter genomes in a phylogenomic framework integrating orthology-based phylogenetic profiling and microsynteny conservation analyses. We delineate gene clusters in the type strain A. baumannii ATCC 19606 whose evolutionary conservation indicates a functional integration of the subsumed genes. These evolutionarily stable gene clusters (ESGCs) reveal metabolic pathways, transcriptional regulators residing next to their targets but also tie together sub-clusters with distinct functions to form higher-order functional modules. We shortlisted 150 ESGCs that either co-emerged with the pathogenic ACB clade or are preferentially found therein. They provide a high-resolution picture of genetic and functional changes that coincide with the manifestation of the pathogenic phenotype in the ACB clade. Key innovations are the remodeling of the regulatory-effector cascade connecting LuxR/LuxI quorum sensing via an intermediate messenger to biofilm formation, the extension of micronutrient scavenging systems, and the increase of metabolic flexibility by exploiting carbon sources that are provided by the human host. We could show experimentally that only members of the ACB clade use kynurenine as a sole carbon and energy source, a substance produced by humans to fine-tune the antimicrobial innate immune response. In summary, this study provides a rich and unbiased set of novel testable hypotheses on how pathogenic Acinetobacter interact with and ultimately infect their human host. It is a comprehensive resource for future research into novel therapeutic strategies.


Subject(s)
Acinetobacter Infections , Acinetobacter calcoaceticus , Acinetobacter Infections/genetics , Acinetobacter Infections/microbiology , Acinetobacter calcoaceticus/genetics , Carbon , Humans , Multigene Family/genetics , Phylogeny , Virulence
3.
Int Microbiol ; 27(1): 303-310, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37338636

ABSTRACT

Pathogenic bacteria have developed several mechanisms to thrive within the hostile environment of the human host, but it is often disregarded that their survival outside this niche is crucial for their successful transmission. Acinetobacter baumannii is very well adapted to both the human host and the hospital environment. The latter is facilitated by multifactorial mechanisms including its outstanding ability to survive on dry surfaces, its high metabolic diversity, and, of course, its remarkable osmotic resistance. As a first response to changing osmolarities, bacteria accumulate K+ in high amount to counterbalance the external ionic strength. Here, we addressed whether K+ uptake is involved in the challenges imposed by the harsh conditions outside its host and how K+ import influences the antibiotic resistance of A. baumannii. For this purpose, we used a strain lacking all major K+ importer ∆kup∆trk∆kdp. Survival of this mutant was strongly impaired under nutrient limitation in comparison to the wild type. Furthermore, we found that not only the resistance against copper but also against the disinfectant chlorhexidine was reduced in the triple mutant compared to the wild type. Finally, we revealed that the triple mutant is highly susceptible to a broad range of antibiotics and antimicrobial peptides. By studying mutants, in which the K+ transporter were deleted individually, we provide evidence that this effect is a consequence of the altered K+ uptake machinery. Conclusively, this study provides supporting information on the relevance of K+ homeostasis in the adaptation of A. baumannii to the nosocomial environment.


Subject(s)
Acinetobacter baumannii , Cross Infection , Humans , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Membrane Transport Proteins/metabolism , Homeostasis
4.
Environ Microbiol ; 25(11): 2416-2430, 2023 11.
Article in English | MEDLINE | ID: mdl-37522309

ABSTRACT

The nosocomial pathogen Acinetobacter baumannii is well known for its extraordinary metabolic diversity. Recently, we demonstrated growth on L-arabinose, but the pathway remained elusive. Transcriptome analyses revealed two upregulated gene clusters that code for isoenzymes catalysing oxidation of a pentonate to α-ketoglutarate. Molecular, genetic, and biochemical experiments revealed one branch to be specific for L-arabonate oxidation, and the other for D-xylonate and D-ribonate. Both clusters also encode an uptake system and a regulator that acts as activator (L-arabonate) or repressor (D-xylonate and D-ribonate). Genes encoding the initial oxidation of pentose to pentonate were not part of the clusters, but our data are consistent with the hypothesis of a promiscous, pyrroloquinoline quinone (PQQ)-dependent, periplasmic pentose dehydrogenase, followed by the uptake of the pentonates and their degradation by specific pathways. However, there is a cross-talk between the two different pathways since the isoenzymes can replace each other. Growth on pentoses was found only in pathogenic Acinetobacter species but not in non-pathogenic such as Acinetobacter baylyi. However, mutants impaired in growth on pentoses were not affected in traits important for infection, but growth on L-arabinose was beneficial for long-term survival and desiccation resistance in A. baumannii ATCC 19606.


Subject(s)
Acinetobacter baumannii , Arabinose , Arabinose/metabolism , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Isoenzymes/metabolism , Pentoses/metabolism , Oxidation-Reduction
5.
Int Microbiol ; 26(3): 543-550, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36648597

ABSTRACT

Acinetobacter baumannii is an opportunistic human pathogen that has become a global threat to healthcare institutions. This Gram-negative bacterium is one of the most successful human pathogens worldwide and responsible for hospital-acquired infections. This is due to its outstanding potential to adapt to very different environments, to persist in the human host and most important, its ability to develop multidrug resistance. Our combined approach of genomic and phenotypic analyses led to the identification of the envelope spanning Tol-Pal system in A. baumannii. We found that the deletion of the tolQ, tolR, tolA, tolB, and pal genes affects cell morphology and increases antibiotic sensitivity, such as the ∆tol-pal mutant exhibits a significantly increased gentamicin and bacitracin sensitivity. Furthermore, Galleria mellonella caterpillar killing assays revealed that the ∆tol-pal mutant exhibits a decreased killing phenotype. Taken together, our findings suggest that the Tol-Pal system is important for cell morphology, antibiotic resistance, and virulence of A. baumannii.


Subject(s)
Acinetobacter baumannii , Humans , Virulence/genetics , Acinetobacter baumannii/genetics , Drug Resistance, Microbial
6.
Microb Cell Fact ; 22(1): 187, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726752

ABSTRACT

BACKGROUND: Enzymes from thermophiles are of great interest for research and bioengineering due to their stability and efficiency. Thermophilic expression hosts such as Thermus thermophilus [T. thermophilus] can overcome specific challenges experienced with protein production in mesophilic expression hosts, such as leading to better folding, increased protein stability, solubility, and enzymatic activity. However, available inducible promoters for efficient protein production in T. thermophilus HB27 are limited. RESULTS: In this study, we characterized the pilA4 promoter region and evaluated its potential as a tool for production of thermostable enzymes in T. thermophilus HB27. Reporter gene analysis using a promoterless ß-glucosidase gene revealed that the pilA4 promoter is highly active under optimal growth conditions at 68 °C and downregulated during growth at 80 °C. Furthermore, growth in minimal medium led to significantly increased promoter activity in comparison to growth in complex medium. Finally, we proved the suitability of the pilA4 promoter for heterologous production of thermostable enzymes in T. thermophilus by producing a fully active soluble mannitol-1-phosphate dehydrogenase from Thermoanaerobacter kivui [T. kivui], which is used in degradation of brown algae that are rich in mannitol. CONCLUSIONS: Our results show that the pilA4 promoter is an efficient tool for gene expression in T. thermophilus with a high potential for use in biotechnology and synthetic biology applications.


Subject(s)
Fimbriae Proteins , Thermus thermophilus , Thermus thermophilus/genetics , Temperature , Promoter Regions, Genetic , Genes, Reporter
7.
Environ Microbiol ; 24(3): 1052-1061, 2022 03.
Article in English | MEDLINE | ID: mdl-34431198

ABSTRACT

Acinetobacter baumannii is outstanding for its ability to cope with low water activities which significantly contributes to its persistence in hospital environments. The vast majority of bacteria are able to prevent loss of cellular water by amassing osmoactive compatible solutes or their precursors into the cytoplasm. One such precursor of an osmoprotectant is choline that is taken up from the environment and oxidized to the compatible solute glycine betaine. Here, we report the identification of the osmotic stress operon betIBA in A. baumannii. This operon encodes the choline oxidation pathway important for the production of the solute glycine betaine. The salt-sensitive phenotype of a betA deletion strain could not be rescued by addition of choline, which is consistent with the role of BetA in choline oxidation. We found that BetA is a choline dehydrogenase but also mediates in vitro the oxidation of glycine betaine aldehyde to glycine betaine. BetA was found to be associated with the membrane and to contain a flavin, indicative for BetA donating electrons into the respiratory chain. The choline dehydrogenase activity was not salt dependent but was stimulated by the compatible solute glutamate.


Subject(s)
Acinetobacter baumannii , Choline Dehydrogenase , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Betaine/metabolism , Choline/metabolism , Flavoproteins , Osmotic Pressure , Water
8.
Environ Microbiol ; 24(9): 4437-4448, 2022 09.
Article in English | MEDLINE | ID: mdl-35652489

ABSTRACT

The opportunistic human pathogen Acinetobacter baumannii can grow with carnitine but its metabolism, regulation and role in virulence remained elusive. Recently, we identified a carnitine transporter encoded by a gene closely associated with potential carnitine degradation genes. Among those is a gene coding for a putative d-malate dehydrogenase (Mdh). Deletion of the mdh gene led to a loss of growth with carnitine but not l-malate; growth with d-malate was strongly reduced. Therefore, it is hypothesized that d-malate is formed during carnitine oxidation and further oxidized to CO2 and pyruvate and, that not, as previously suggested, l-malate is the product and funnelled directly into the TCA cycle. Mutant analyses revealed that the hydrolase in this cluster funnels acetylcarnitine into the degradation pathway by deacetylation. A transcriptional regulator CarR bound in a concentration-dependent manner to the intergenic region between the mdh gene, the first gene of the carnitine catabolic operon and the carR gene in the presence and absence of carnitine. Both carnitine and d-malate induced CarR-dependent expression of the carnitine operon. Infection studies with Galleria mellonella larvae demonstrated a strong increase in virulence by addition of carnitine indicating that carnitine degradation plays a pivotal role in virulence of A. baumannii.


Subject(s)
Acinetobacter baumannii , Acetylcarnitine/metabolism , Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Carbon Dioxide/metabolism , Carnitine/metabolism , Carnitine/pharmacology , DNA, Intergenic , Humans , Hydrolases/metabolism , Malate Dehydrogenase/genetics , Malate Dehydrogenase/metabolism , Malates/metabolism , Pyruvates/metabolism , Virulence/genetics
9.
Int J Med Microbiol ; 311(5): 151516, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34144496

ABSTRACT

Acinetobacter baumannii is an opportunistic human pathogen that has become a global threat to healthcare institutions worldwide. The success of A. baumannii is based on the rise of multiple antibiotic resistances and its outstanding potential to persist in the human host and under conditions of low water activity in hospital environments. Combating low water activities involves osmoprotective measures such as uptake of compatible solutes and K+. To address the role of K+ uptake in the physiology of A. baumannii we have identified K+ transporter encoding genes in the genome of A. baumannii ATCC 19606. The corresponding genes (kup, trk, kdp) were deleted and the phenotype of the mutants was studied. The triple mutant was defective in K+ uptake which resulted in a pronounced growth defect at high osmolarities (300 mM NaCl). Additionally, mannitol and glutamate synthesis were strongly reduced in the mutant. To mimic host conditions and to study its role as an uropathogen, we performed growth studies with the K+ transporter deletion mutants in human urine. Both, the double (ΔkupΔtrk) and the triple mutant were significantly impaired in growth. This could be explained by the inability of ΔkupΔtrkΔkdp to metabolize various amino acids properly. Moreover, the reactive oxygen species resistance of the triple mutant was significantly reduced in comparison to the wild type, making it susceptible to one essential part of the innate immune response. Finally, the triple and the double mutant were strongly impaired in Galleria mellonella killing giving first insights in the importance of K+ uptake in virulence.


Subject(s)
Acinetobacter baumannii , Moths , Acinetobacter baumannii/genetics , Amino Acids , Animals , Humans , Phenotype , Virulence
10.
Extremophiles ; 25(5-6): 425-436, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34542714

ABSTRACT

Extremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural transformation plays an important role in bacterial adaptation. This mode of DNA transfer permits the transfer of genetic information between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal gene transfer (HGT), significantly contributes to genome plasticity over evolutionary history and is a driving force for the spread of fitness-enhancing functions including virulence genes and antibiotic resistances. In particular, HGT has played an important role for adaptation of bacteria to extreme environments. Here, we present a survey of the natural transformation systems in bacteria that live under extreme conditions: the thermophile Thermus thermophilus and two desiccation-resistant members of the genus Acinetobacter such as Acinetobacter baylyi and Acinetobacter baumannii. The latter is an opportunistic pathogen and has become a world-wide threat in health-care institutions. We highlight conserved and unique features of the DNA transporter in Thermus and Acinetobacter and present tentative models of both systems. The structure and function of both DNA transporter are described and the mechanism of DNA uptake is discussed.


Subject(s)
Acinetobacter , Acinetobacter/genetics , Extreme Environments , Gene Transfer, Horizontal , Thermus thermophilus
11.
Environ Microbiol ; 22(7): 2724-2735, 2020 07.
Article in English | MEDLINE | ID: mdl-32219961

ABSTRACT

Acinetobacter baumannii is outstanding for its ability to cope with low water activities and therefore its adaptation mechanism to osmotic stress. Here we report on the identification and characterization of five different secondary active compatible solute transporters, belonging to the betaine-choline-carnitine transporter (BCCT) family. Our studies revealed two choline-specific and three glycine betaine-specific BCCTs. Activity of the BCCTs was differentially dependent to the osmolality: one choline and one betaine transporter were osmostress-independent. Addition of choline to resting cells of Acinetobacter grown in the presence of the co-substrate choline or with phosphatidylcholine as sole carbon source led to ATP synthesis in the wild type but not in the BCCT quadruple mutant. This indicates that the BCCTs are essential to transport the energy substrate choline. The role of the different BCCTs in osmostress resistance and in metabolic adaptation of A. baumannii to the human host is discussed.


Subject(s)
Acinetobacter baumannii/metabolism , Adaptation, Physiological/physiology , GABA Plasma Membrane Transport Proteins/metabolism , Host-Pathogen Interactions/physiology , Membrane Transport Proteins/metabolism , Organic Cation Transport Proteins/metabolism , Osmotic Pressure/physiology , Acinetobacter Infections/metabolism , Bacterial Proteins/metabolism , Humans
12.
Environ Microbiol ; 22(12): 5300-5308, 2020 12.
Article in English | MEDLINE | ID: mdl-32929857

ABSTRACT

Acinetobacter baumannii is an opportunistic pathogen, which has become a rising threat in healthcare facilities worldwide due to increasing antibiotic resistances and optimal adaptation to clinical environments and the human host. We reported in a former publication on the identification of three phopholipases of the phospholipase D (PLD) superfamily in A. baumannii ATCC 19606T acting in concerted manner as virulence factors in Galleria mellonella infection and lung epithelial cell invasion. This study focussed on the function of the three PLDs. A Δpld1-3 mutant was defect in biosynthesis of the phospholipids cardiolipin (CL) and monolysocardiolipin (MLCL), whereas the deletion of pld2 and pld3 abolished the production of MLCL. Complementation of the Δpld1-3 mutant with pld1 restored CL biosynthesis demonstrating that the PLD1 is implicated in CL biosynthesis. Complementation of the Δpld1-3 mutant with either pld2 or pld3 restored MLCL and CL production leading to the conclusion that PLD2 and PLD3 are implicated in CL and MLCL production. Mutant studies revealed that two catalytic motifs are essential for the PLD3-mediated biosynthesis of CL and MLCL. The Δpld1-3 mutant exhibited a decreased colistin and polymyxin B resistance indicating a role of CL in cationic antimicrobial peptides (CAMPs) resistance.


Subject(s)
Acinetobacter baumannii/metabolism , Antimicrobial Cationic Peptides/metabolism , Cardiolipins/biosynthesis , Drug Resistance, Bacterial , Phospholipase D/metabolism , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lysophospholipids/biosynthesis , Mutation , Phospholipase D/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
13.
Environ Microbiol ; 22(12): 5156-5166, 2020 12.
Article in English | MEDLINE | ID: mdl-32618111

ABSTRACT

The stress protectant trehalose is synthesized in Acinetobacter baumannii from UPD-glucose and glucose-6-phosphase via the OtsA/OtsB pathway. Previous studies proved that deletion of otsB led to a decreased virulence, the inability to grow at 45°C and a slight reduction of growth at high salinities indicating that trehalose is the cause of these phenotypes. We have questioned this conclusion by producing ∆otsA and ∆otsBA mutants and studying their phenotypes. Only deletion of otsB, but not deletion of otsA or otsBA, led to growth impairments at high salt and high temperature. The intracellular concentrations of trehalose and trehalose-6-phosphate were measured by NMR or enzymatic assay. Interestingly, none of the mutants accumulated trehalose any more but the ∆otsB mutant with its defect in trehalose-6-phosphate phosphatase activity accumulated trehalose-6-phosphate. Moreover, expression of otsA in a ∆otsB background under conditions where trehalose synthesis is not induced led to growth inhibition and the accumulation of trehalose-6-phosphate. Our results demonstrate that trehalose-6-phosphate affects multiple physiological activities in A. baumannii ATCC 19606.


Subject(s)
Acinetobacter baumannii/physiology , Sugar Phosphates/metabolism , Trehalose/analogs & derivatives , Acinetobacter baumannii/genetics , Acinetobacter baumannii/growth & development , Acinetobacter baumannii/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Hot Temperature , Phenotype , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Sodium Chloride/metabolism , Trehalose/metabolism
14.
Infect Immun ; 87(4)2019 04.
Article in English | MEDLINE | ID: mdl-30718286

ABSTRACT

Acinetobacter baumannii is an important nosocomial pathogen. Mechanisms that allow A. baumannii to cause human infection are still poorly understood. Iron is an essential nutrient for bacterial growth in vivo, and the multiplicity of iron uptake systems in A. baumannii suggests that iron acquisition contributes to the ability of A. baumannii to cause infection. In Gram-negative bacteria, active transport of ferrisiderophores and heme relies on the conserved TonB-ExbB-ExbD energy-transducing complex, while active uptake of ferrous iron is mediated by the Feo system. The A. baumannii genome invariably contains three tonB genes (tonB1, tonB2, and tonB3), whose role in iron uptake is poorly understood. Here, we generated A. baumannii mutants with knockout mutations in the feo and/or tonB gene. We report that tonB3 is essential for A. baumannii growth under iron-limiting conditions, whereas tonB1, tonB2, and feoB appear to be dispensable for ferric iron uptake. tonB3 deletion resulted in reduced intracellular iron content despite siderophore overproduction, supporting a key role of TonB3 in iron uptake. In contrast to the case for tonB1 and tonB2, the promoters of tonB3 and feo contain functional Fur boxes and are upregulated in iron-poor media. Both TonB3 and Feo systems are required for growth in complement-free human serum and contribute to resistance to the bactericidal activity of normal human serum, but only TonB3 appears to be essential for virulence in insect and mouse models of infection. Our findings highlight a central role of the TonB3 system for A. baumannii pathogenicity. Hence, TonB3 represents a promising target for novel antibacterial therapies and for the generation of attenuated vaccine strains.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter baumannii/metabolism , Acinetobacter baumannii/pathogenicity , Cation Transport Proteins/metabolism , Iron/metabolism , Acinetobacter baumannii/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport, Active , Cation Transport Proteins/genetics , Female , Heme/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Siderophores/metabolism , Virulence
15.
J Antimicrob Chemother ; 74(5): 1192-1201, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30783664

ABSTRACT

OBJECTIVES: To identify major facilitator superfamily (MFS)-type chloramphenicol transporters of Acinetobacter baumannii AYE, to characterize its substrate specificity and identify CraA substrate and H+ binding sites. METHODS: Five ORFs predicted to encode chloramphenicol transporters were heterologously expressed in Escherichia coli and their substrate specificity was determined by drug susceptibility assays on solid agar medium. CraA transport properties were determined via whole cell fluorescence experiments using ethidium and dequalinium. ACMA quenching was used to characterize the H+/drug antiport process in everted membrane vesicles. The function of CraA in A. baumannii was determined by drug susceptibility assay using A. baumannii ATCC 19606 ΔcraA. RESULTS: CraA, ABAYE0913 and CmlA5 are functionally active when overproduced in E. coli. ABAYE0913 conferred resistance to florfenicol and benzalkonium, CmlA5 conferred resistance to chloramphenicol and thiamphenicol, and craA expression resulted in resistance to chloramphenicol, thiamphenicol, florfenicol, ethidium, dequalinium, chlorhexidine, benzalkonium, mitomycin C and TPP+. Cell expressing craA_E38A showed no resistance to all tested drugs, implying that Glu-38 is involved in the binding of drugs and/or protons. Functional assays indicated that substitution of Asp-46 to Ala resulted in severe susceptibility to cationic drugs, chloramphenicol and thiamphenicol. In contrast, Glu-338 is important for the recognition of chloramphenicol, florfenicol, chlorhexidine and dequalinium. CONCLUSIONS: This study suggests that CraA has a broad substrate specificity, similar to that of E. coli MdfA. However, due to the presence of three charged residues in the transmembrane region conferring different susceptibility profiles upon substitution to Ala, we postulate that CraA has a different substrate recognition mode compared with MdfA.


Subject(s)
Acinetobacter baumannii/genetics , Acinetobacter baumannii/metabolism , Antiporters/genetics , Antiporters/metabolism , Chloramphenicol/metabolism , Hydrogen/metabolism , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Amino Acid Sequence , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antiporters/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Cloning, Molecular , Drug Resistance, Bacterial , Models, Molecular , Protein Conformation , Sequence Analysis, DNA , Substrate Specificity
16.
Curr Issues Mol Biol ; 29: 23-36, 2018.
Article in English | MEDLINE | ID: mdl-29648539

ABSTRACT

The small amount of genetic content in thermophiles generally limits their adaptability to environmental changes. In Thermus spp., very active horizontal gene transfer (HGT) mechanisms allow the rapid spread of strain-specific adaptive gene modules among the entire population. Constitutive expression of a rather particular and highly efficient DNA transport apparatus (DTA) is at the center of this HGT-mediated enhanced adaptability. The function of the DTA is dependent on the integrity and longevity of the extracellular DNA (eDNA) being transformed, which can be improved by the production of extracellular vesicles (EV) through lysis of a fraction of the population. The DTA must also contend with the recipient cell's defensive barriers, namely restriction enzymes, a panoply of CRISPR-Cas systems, and the argonaute-like protein TtAgo, which may be bypassed by transjugation, a new class of bidirectional transformation-dependent conjugation. Efficient transjugation depends on the presence of the ICETh1, an integrative and conjugative element which promotes simultaneous, generalized DNA transfer from several points in the genome. Transjugation shows preference for genes located within a megaplasmid replicon, where the main strain-specific adaptive modules are located. Contribution of transformation, vesicle-mediated eDNAs, and transjugation to HGT in this genus is discussed.


Subject(s)
Gene Transfer, Horizontal , Thermus/physiology , Adaptive Immunity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Conjugation, Genetic , DNA, Bacterial , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Host-Pathogen Interactions , Immunity, Innate , Models, Biological , Transduction, Genetic
17.
Extremophiles ; 22(3): 461-471, 2018 May.
Article in English | MEDLINE | ID: mdl-29464394

ABSTRACT

The traffic ATPase PilF of Thermus thermophilus powers pilus assembly as well as uptake of DNA. PilF differs from other traffic ATPases by a triplicated general secretory pathway II, protein E, N-terminal domain (GSPIIABC). We investigated the in vivo and in vitro roles of the GSPII domains, the Walker A motif and a catalytic glutamate by analyzing a set of PilF deletion derivatives and pilF mutants. Here, we report that PilF variants devoid of the first two or all three GSPII domains do not form stable hexamers indicating a role of the triplicated GSPII domain in complex formation and/or stability. A pilFΔGSPIIC mutant was significantly impaired in piliation which leads to the conclusion that the GSPIIC domain plays a vital role in pilus assembly. Interestingly, the pilFΔGSPIIC mutant was hypertransformable. This suggests that GSPIIC strongly affects transformation efficiency. A pilF∆GSPIIA mutant exhibited wild-type piliation but reduced pilus-mediated twitching motility, suggesting that GSPIIA plays a role in pilus dynamics. Furthermore, we report that pilF mutants with a defect in the ATP binding Walker A motif or in the catalytic glutamate residue are defective in piliation and natural transformation. These findings show that both, ATP binding and hydrolysis, are essential for the dual function of PilF in natural transformation and pilus assembly.


Subject(s)
AAA Domain , Adenosine Triphosphatases/chemistry , Bacterial Proteins/chemistry , Fimbriae, Bacterial/enzymology , Thermus thermophilus/enzymology , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Mutation
18.
J Biol Chem ; 291(28): 14448-56, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27226590

ABSTRACT

Secretins are versatile outer membrane pores used by many bacteria to secrete proteins, toxins, or filamentous phages; extrude type IV pili (T4P); or take up DNA. Extrusion of T4P and natural transformation of DNA in the thermophilic bacterium Thermus thermophilus requires a unique secretin complex comprising six stacked rings, a membrane-embedded cone structure, and two gates that open and close a central channel. To investigate the role of distinct domains in ring and gate formation, we examined a set of deletion derivatives by cryomicroscopy techniques. Here we report that maintaining the N0 ring in the deletion derivatives led to stable PilQ complexes. Analyses of the variants unraveled that an N-terminal domain comprising a unique ßßßαß fold is essential for the formation of gate 2. Furthermore, we identified four ßαßßα domains essential for the formation of the N2 to N5 rings. Mutant studies revealed that deletion of individual ring domains significantly reduces piliation. The N1, N2, N4, and N5 deletion mutants were significantly impaired in T4P-mediated twitching motility, whereas the motility of the N3 mutant was comparable with that of wild-type cells. This indicates that the deletion of the N3 ring leads to increased pilus dynamics, thereby compensating for the reduced number of pili of the N3 mutant. All mutants exhibit a wild-type natural transformation phenotype, leading to the conclusion that DNA uptake is independent of functional T4P.


Subject(s)
Ion Channel Gating , Secretin/metabolism , Thermus thermophilus/metabolism , Protein Conformation , Secretin/chemistry , Structure-Activity Relationship , Thermus thermophilus/chemistry
19.
J Infect Dis ; 213(9): 1388-99, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26681776

ABSTRACT

Acinetobacter baumannii is an emerging opportunistic pathogen, responsible for up to 10% of gram-negative, nosocomial infections. The global increase of multidrug-resistant and pan-resistant Acinetobacter isolates presents clinicians with formidable challenges. To establish a persistent infection,A. baumannii must overcome the detrimental effects of complement as the first line of defense against invading microorganisms. However, the immune evasion principles underlying serum resistance inA. baumannii remain elusive. Here, we identified a novel plasminogen-binding protein, termed CipA. Bound plasminogen, upon conversion to active plasmin, degraded fibrinogen and complement C3b and contributed to serum resistance. Furthermore, CipA directly inhibited the alternative pathway of complement in vitro, irrespective of its ability to bind plasminogen. A CipA-deficient mutant was efficiently killed by human serum and showed a defect in the penetration of endothelial monolayers, demonstrating that CipA is a novel multifunctional protein that contributes to the pathogenesis ofA. baumannii.


Subject(s)
Acinetobacter baumannii/metabolism , Acinetobacter baumannii/pathogenicity , Bacterial Proteins/metabolism , Complement System Proteins/metabolism , Plasminogen/metabolism , Acinetobacter Infections/microbiology , Acinetobacter baumannii/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Membrane/chemistry , Complement System Proteins/chemistry , Humans , Plasminogen/chemistry , Protein Binding
20.
Environ Microbiol ; 18(1): 65-74, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25727469

ABSTRACT

Natural transformation systems and type IV pili are linked in many naturally competent bacteria. In the Gram-negative bacterium Thermus thermophilus, a leading model organism for studies of DNA transporters in thermophilic bacteria, seven competence proteins play a dual role in both systems, whereas two competence genes, comEA and comEC, are suggested to represent unique DNA translocator proteins. Here we show that the T. thermophilus ComEA protein binds dsDNA and is anchored in the inner membrane. comEA is co-transcribed with the flanking comEC gene, and transcription of this operon is upregulated by nutrient limitation and low temperature. To our surprise, a comEC mutant was impaired in piliation. We followed this observation and uncovered that the impaired piliation of the comEC mutant is due to a transcriptional downregulation of pilA4 and the pilN both playing a dual role in piliation and natural competence. Moreover, the comEC mutation resulted in a dramatic decrease in mRNA levels of the pseudopilin gene pilA1, which is unique for the DNA transporter. We conclude that ComEC modulates transcriptional regulation of type IV pili and DNA translocator components thereby mediating a response to extracellular parameters.


Subject(s)
Biological Transport, Active/genetics , DNA Transformation Competence/genetics , DNA-Binding Proteins/genetics , Fimbriae, Bacterial/genetics , Membrane Proteins/genetics , Thermus thermophilus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA/metabolism , Fimbriae, Bacterial/metabolism , Mutation , Operon/genetics , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL