Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters

Publication year range
1.
Radiographics ; 44(7): e230156, 2024 07.
Article in English | MEDLINE | ID: mdl-38870043

ABSTRACT

Accurate evaluation of the mitral valve (MV) apparatus is essential for understanding the mechanisms of MV disease across various clinical scenarios. The mitral annulus (MA) is a complex and crucial structure that supports MV function; however, conventional imaging techniques have limitations in fully capturing the entirety of the MA. Moreover, recognizing annular changes might aid in identifying patients who may benefit from advanced cardiac imaging and interventions. Multimodality cardiovascular imaging plays a major role in the diagnosis, prognosis, and management of MV disease. Transthoracic echocardiography is the first-line modality for evaluation of the MA, but it has limitations. Cardiac MRI (CMR) has emerged as a robust imaging modality for assessing annular changes, with distinct advantages over other imaging techniques, including accurate flow and volumetric quantification and assessment of variations in the measurements and shape of the MA during the cardiac cycle. Mitral annular disjunction (MAD) is defined as atrial displacement of the hinge point of the MV annulus away from the ventricular myocardium, a condition that is now more frequently diagnosed and studied owing to recent technical advances in cardiac imaging. However, several unresolved issues regarding MAD, such as the functional significance of pathologic disjunction and how this disjunction advances in the clinical course, require further investigation. The authors review the role of CMR in the assessment of MA disease, with a focus on MAD and its functional implications in MV prolapse and mitral regurgitation. ©RSNA, 2024 Supplemental material is available for this article. See the invited commentary by Stojanovska and Fujikura in this issue.


Subject(s)
Magnetic Resonance Imaging , Mitral Valve , Humans , Mitral Valve/diagnostic imaging , Magnetic Resonance Imaging/methods , Mitral Valve Insufficiency/diagnostic imaging , Heart Valve Diseases/diagnostic imaging
2.
Lett Appl Microbiol ; 77(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38211976

ABSTRACT

Acinetobacter baumannii is a relevant bacterium due to its high-resistance profile. It is well known that antimicrobial resistance is primarily linked to mutations and the acquisition of external genomic material, such as plasmids or phages, to which the Clustered Regularly Interspaced Short Palindromic Repeats associated with Cas proteins, or CRISPR-Cas, system is related. It is known that the system can influence the acquisition of foreign genetic material and play a role in various physiological pathways. In this study, we conducted an in-silico analysis using 91 fully assembled genomes of clinical strains obtained from the NCBI database. Among the analyzed genomes, the I-F1 subtype of the CRISPR-Cas system was detected showcasing variations in architecture and phylogeny. Using bioinformatic tools, we determined the presence, distribution, and specific characteristics of the CRISPR-Cas system. We found a possible association of the system with resistance genes but not with virulence determinants. Analysis of the system's components, including spacer sequences, suggests its potential role in protecting against phage infections, highlighting its protective function.


Subject(s)
Acinetobacter baumannii , Bacteriophages , Acinetobacter baumannii/genetics , CRISPR-Cas Systems , Plasmids/genetics , Genomics , Phylogeny , Bacteriophages/genetics
3.
J Vis ; 24(8): 11, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39172467

ABSTRACT

The perception of the ambiguous image of #TheDress may be influenced by optical factors, such as macular pigments. Their accumulation during childhood could increase with age and the ingestion of carotenoid-containing foods. The purpose of this study was to investigate whether the visual perception of the dress in children would differ based on age and carotenoid preference. This was a cross-sectional, observational, and comparative study. A poll was administered to children aged 2 to 10 years. Parents were instructed to inquire about the color of #TheDress from their children. A carotenoid preference survey was also completed. A total of 413 poll responses were analyzed. Responses were categorized based on the perceived color of the dress: blue/black (BB) (n = 204) and white/gold (WG) (n = 209). The mean and median age of the WG group was higher than the BB group (mean 6.1, median 6.0 years, standard deviation [SD] 2.2; mean 5.5, median 5.0 years, SD 2.3; p = 0.007). Spearman correlation between age and group was 0.133 (p = 0.007). Green-leaf preference (GLP) showed a statistically significant difference between groups (Mann-Whitney U: p = 0.038). Spearman correlation between GLP and group was 0.102 (p = 0.037). Logistic regression for the perception of the dress as WG indicated that age and GLP were significant predictors (age: B weight 0.109, p = 0.012, odds ratio: 1.115; GLP: B weight 0.317, p = 0.033, odds ratio: 1.373). Older children and those with a higher GLP were more likely to perceive #TheDress as WG. These results suggest a potential relationship with the gradual accumulation of macular pigments throughout a child's lifetime.


Subject(s)
Color Perception , Humans , Child , Cross-Sectional Studies , Female , Male , Child, Preschool , Color Perception/physiology , Carotenoids/metabolism , Food Preferences/physiology , Age Factors
4.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674152

ABSTRACT

The parasite Trichomonas vaginalis is the etiologic agent of trichomoniasis, the most common non-viral sexually transmitted disease worldwide. This infection often remains asymptomatic and is related to several health complications. The traditional treatment for trichomoniasis is the use of drugs of the 5-nitroimidazole family, such as metronidazole; however, scientific reports indicate an increasing number of drug-resistant strains. Benzimidazole derivatives could offer an alternative in the search for new anti-trichomonas drugs. In this sense, two attractive candidates are the compounds O2N-BZM7 and O2N-BZM9 (1H-benzimidazole derivatives), since, through in vitro tests, they have shown a higher trichomonacide activity. In this study, we determined the effect on the expression level of metabolic genes in T. vaginalis. The results show that genes involved in redox balance (NADHOX, G6PD::6PGL) are overexpressed, as well as the gene that participates in the first reaction of glycolysis (CK); on the other hand, structural genes such as ACT and TUB are decreased in expression in trophozoites treated with the compound O2N-BZM9, which would probably affect its morphology, motility and virulence. These results align with the trichomonacidal activity of the compounds, with benzimidazole O2N-BZM9 being the most potent, with an IC50 value of 4.8 µM. These results are promising for potential future therapeutic applications.


Subject(s)
Benzimidazoles , Trichomonas vaginalis , Trichomonas vaginalis/drug effects , Trichomonas vaginalis/genetics , Trichomonas vaginalis/metabolism , Benzimidazoles/pharmacology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Gene Expression Regulation/drug effects , Humans , Antiprotozoal Agents/pharmacology , Antitrichomonal Agents/pharmacology
5.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37628871

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, affecting an estimated 500 million people worldwide, is a genetic disorder that causes human enzymopathies. Biochemical and genetic studies have identified several variants that produce different ranges of phenotypes; thus, depending on its severity, this enzymopathy is classified from the mildest (Class IV) to the most severe (Class I). Therefore, understanding the correlation between the mutation sites of G6PD and the resulting phenotype greatly enhances the current knowledge of enzymopathies' phenotypic and genotypic heterogeneity, which will assist both clinical diagnoses and personalized treatments for patients with G6PD deficiency. In this review, we analyzed and compared the structural and functional data from 21 characterized G6PD variants found in the Mexican population that we previously characterized. In order to contribute to the knowledge regarding the function and structure of the variants associated with G6PD deficiency, this review aimed to determine the molecular basis of G6PD and identify how these mutations could impact the structure, stability, and function of the enzyme and its relation with the clinical manifestations of this disease.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Glucosephosphate Dehydrogenase , Humans , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase Deficiency/genetics , Genotype , Mutation , Phenotype
6.
Int J Neuropsychopharmacol ; 25(5): 425-431, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35022720

ABSTRACT

Schizophrenia is a severe mental disorder featuring psychotic, depressive, and cognitive alterations. Current antipsychotic drugs preferentially target dopamine D2-R and/or serotonergic 5-HT2A/1A-R. They partly alleviate psychotic symptoms but fail to treat negative symptoms and cognitive deficits. Here we report on the putative antipsychotic activity of (1-[(3-fluorophenyl)sulfonyl]-4-(piperazin-1-yl)-1H-pyrrolo[3,2-c]quinoline dihydrochloride) (FPPQ), a dual serotonin 5-HT3-R/5-HT6-R antagonist endowed with pro-cognitive properties. FPPQ fully reversed phencyclidine-induced decrease of low-frequency oscillations in the medial prefrontal cortex of anaesthetized rats, a fingerprint of antipsychotic activity. This effect was mimicked by the combined administration of the 5-HT3-R and 5-HT6-R antagonists ondansetron and SB-399 885, respectively, but not by either drug alone. In freely moving rats, FPPQ countered phencyclidine-induced hyperlocomotion and augmentation of gamma and high-frequency oscillations in medial prefrontal cortex, dorsal hippocampus, and nucleus accumbens. Overall, this supports that simultaneous blockade of 5-HT3R and 5-HT6-R-like that induced by FPPQ-can be a new target in antipsychotic drug development.


Subject(s)
Antipsychotic Agents , Brain , Phencyclidine , Quinolines , Serotonin Antagonists , Animals , Antipsychotic Agents/pharmacology , Brain/drug effects , Brain/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Phencyclidine/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Quinolines/pharmacology , Rats , Receptors, Serotonin/metabolism , Serotonin Antagonists/pharmacology
7.
Int J Mol Sci ; 23(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35743027

ABSTRACT

Acinetobacter baumannii is a Gram-negative bacillus that causes multiple infections that can become severe, mainly in hospitalized patients. Its high ability to persist on abiotic surfaces and to resist stressors, together with its high genomic plasticity, make it a remarkable pathogen. Currently, the isolation of strains with high antimicrobial resistance profiles has gained relevance, which complicates patient treatment and prognosis. This resistance capacity is generated by various mechanisms, including the modification of the target site where antimicrobial action is directed. This mechanism is mainly generated by genetic mutations and contributes to resistance against a wide variety of antimicrobials, such as ß-lactams, macrolides, fluoroquinolones, aminoglycosides, among others, including polymyxin resistance, which includes colistin, a rescue antimicrobial used in the treatment of multidrug-resistant strains of A. baumannii and other Gram-negative bacteria. Therefore, the aim of this review is to provide a detailed and up-to-date description of antimicrobial resistance mediated by the target site modification in A. baumannii, as well as to detail the therapeutic options available to fight infections caused by this bacterium.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial , Fluoroquinolones/pharmacology , Humans , Microbial Sensitivity Tests , beta-Lactams/pharmacology
8.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430836

ABSTRACT

Treatments to combat giardiasis have been reported to have several drawbacks, partly due to the drug resistance and toxicity of current antiparasitic agents. These constraints have prompted many researchers to investigate new drugs that act against protozoan parasites. Enzyme inhibition is an important means of regulating pathogen metabolism and has recently been identified as a significant alternative target in the search for new treatments. Glucose-6-phosphate dehydrogenase and 6-phosphogluconolactonase (G6PD::6PGL) is a bifunctional enzyme involved in the pentose phosphate pathway (PPP) in Giardia lamblia (G. lamblia). The G. lamblia enzyme is unusual since, unlike the human enzyme, it is a fused enzyme. Here, we show, through inhibition assays, that an in-house chemical library of 120 compounds and four target compounds, named CNZ-7, CNZ-8, CMC-1, and FLP-2, are potent inhibitors of the G. lamblia G6PD::6PGL fused enzyme. With a constant (k2) of 2.3, 3.2, and 2.8 M−1 s−1, respectively, they provoke alterations in the secondary and tertiary protein structure and global stability. As a novel approach, target compounds show antigiardial activity, with IC50 values of 8.7, 15.2, 15.3, and 24.1 µM in trophozoites from G. lamblia. Moreover, these compounds show selectivity against G. lamblia, since, through counter-screening in Caco-2 and HT29 human cells, they were found to have low toxicity. This finding positions these compounds as a potential and attractive starting point for new antigiardial drugs.


Subject(s)
Giardia lamblia , Giardiasis , Animals , Humans , Giardiasis/drug therapy , Giardiasis/parasitology , Trophozoites/metabolism , Glucosephosphate Dehydrogenase/metabolism , Caco-2 Cells
9.
Genome ; 64(12): 1091-1098, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34192470

ABSTRACT

Near-isogenic lines (NILs) are classical genetic tools used to dissect the actions of an allele when placed in a uniform genetic background. Although the goal of NIL creation is to examine the effects of a single allele in isolation, DNA linked to the allele is invariably retained and can confound any allele-specific effects. In addition to genetic variation, highly polymorphic species such as Zea mays will contain introgressed polymorphisms encompassing transposable elements (TEs) and the cis-acting small RNA (sRNA) that represses them. Through transcriptomics, we described the differences in sRNA and TE transcriptional expression between a W22-derived introgression and its homologous B73 region. As anticipated, many differences in sRNA expression were observed. Unexpectedly, however, 24nt sRNA expression over the introgressed region was low overall compared to both the homologous B73 region and the rest of the genome. Across the introgression, low sRNA expression was accompanied by increased TE transcription. Possible explanations for the observed trends in sRNA and TE expression across the introgression region are discussed. These findings support the notion that any introgressed allele is in an epigenetic environment distinct from that found at the allele from the recurrent parent. Additionally, these results suggest that further study of sRNA expression levels during the introgression process is warranted.


Subject(s)
DNA Transposable Elements , RNA, Plant/genetics , Zea mays , Alleles , DNA Transposable Elements/genetics , Zea mays/genetics
10.
Int J Mol Sci ; 22(11)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205867

ABSTRACT

The increase in the use of antimicrobials such as colistin for the treatment of infectious diseases has led to the appearance of Aeromonas strains resistant to this drug. However, resistance to colistin not only occurs in the clinical area but has also been determined in Aeromonas isolates from the environment or animals, which has been determined by the detection of mcr genes that confer a resistance mechanism to colistin. The variants mcr-1, mcr-3, and mcr-5 have been detected in the genus Aeromonas in animal, environmental, and human fluids samples. In this article, an overview of the resistance to colistin in Aeromonas is shown, as well as the generalities of this molecule and the recommended methods to determine colistin resistance to be used in some of the genus Aeromonas.


Subject(s)
Aeromonas/genetics , Anti-Bacterial Agents/chemistry , Colistin/chemistry , Drug Resistance, Bacterial/genetics , Aeromonas/drug effects , Aeromonas/pathogenicity , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Colistin/therapeutic use , Humans , Plasmids/drug effects , Plasmids/genetics
11.
J Environ Sci Health B ; 56(7): 634-643, 2021.
Article in English | MEDLINE | ID: mdl-34082656

ABSTRACT

The present study aimed to evaluate the Strata-X® sorbent, commonly used in cartridges, through analysis by high-performance liquid chromatography coupled with mass spectrometry. Due to the different physical-chemical characteristics of the compounds, different conditions of chromatography and mass analysis were necessary. The developed methods were validated in terms of selectivity, linear range, linearity (coefficient of determination, r2), the limit of detection (LOD), the limit of quantification (LOQ), accuracy (recovery, %), and precision (RSD, %). The results allowed us to select efficient extraction methods, using methanol acidified to pH 2 with formic acid, to elute the herbicides 2,4-D and dicamba in both sorbent materials. Besides, the Strata-X® sorbent was efficient in the sorption of analytes; thus, we indicate it for potential use in air sampling as an alternative to XAD-2.


Subject(s)
Dicamba , Herbicides , 2,4-Dichlorophenoxyacetic Acid , Chromatography, High Pressure Liquid , Dicamba/analysis , Herbicides/analysis , Limit of Detection
12.
Cancer ; 126(8): 1668-1682, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32022261

ABSTRACT

BACKGROUND: Although curcumin's effect on head and neck cancer has been studied in vitro and in vivo, to the authors' knowledge its efficacy is limited by poor systemic absorption from oral administration. APG-157 is a botanical drug containing multiple polyphenols, including curcumin, developed under the US Food and Drug Administration's Botanical Drug Development, that delivers the active components to oromucosal tissues near the tumor target. METHODS: A double-blind, randomized, placebo-controlled, phase 1 clinical trial was conducted with APG-157 in 13 normal subjects and 12 patients with oral cancer. Two doses, 100 mg or 200 mg, were delivered transorally every hour for 3 hours. Blood and saliva were collected before and 1 hour, 2 hours, 3 hours, and 24 hours after treatment. Electrocardiograms and blood tests did not demonstrate any toxicity. RESULTS: Treatment with APG-157 resulted in circulating concentrations of curcumin and analogs peaking at 3 hours with reduced IL-1ß, IL-6, and IL-8 concentrations in the salivary supernatant fluid of patients with cancer. Salivary microbial flora analysis showed a reduction in Bacteroidetes species in cancer subjects. RNA and immunofluorescence analyses of tumor tissues of a subject demonstrated increased expression of genes associated with differentiation and T-cell recruitment to the tumor microenvironment. CONCLUSIONS: The results of the current study suggested that APG-157 could serve as a therapeutic drug in combination with immunotherapy. LAY SUMMARY: Curcumin has been shown to suppress tumor cells because of its antioxidant and anti-inflammatory properties. However, its effectiveness has been limited by poor absorption when delivered orally. Subjects with oral cancer were given oral APG-157, a botanical drug containing multiple polyphenols, including curcumin. Curcumin was found in the blood and in tumor tissues. Inflammatory markers and Bacteroides species were found to be decreased in the saliva, and immune T cells were increased in the tumor tissue. APG-157 is absorbed well, reduces inflammation, and attracts T cells to the tumor, suggesting its potential use in combination with immunotherapy drugs.


Subject(s)
Absorption, Physiological/drug effects , Antineoplastic Agents/therapeutic use , Cytokines/antagonists & inhibitors , Microbiota/drug effects , Mouth Neoplasms/drug therapy , Mouth Neoplasms/metabolism , Adult , Aged , Curcumin/therapeutic use , Cytokines/metabolism , Double-Blind Method , Female , Humans , Inflammation/metabolism , Male , Middle Aged , Polyphenols/therapeutic use , Saliva/microbiology , Tumor Microenvironment/drug effects
13.
Anal Biochem ; 596: 113636, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32081619

ABSTRACT

A procedure is described to measure curcumin (C), demethoxycurcumin (DMC), bisdemethoxycurcumin (BDMC), tetrahydrocurcumim (TC) and their glucuronidated metabolites (CG, DMCG, and BDMCG) in plasma, brain, liver and tumor samples. The procedure involves converting the analytes to their boron difluoride derivatives and analyzing them by combined liquid chromatography coupled to an ion trap mass spectrometer operating in the negative ion MSn scan mode. The method has superb limits of detection of 0.01 nM for all curcuminoids and 0.5 nM for TC and the glucuroniated metabolites, and several representative chromatograms of biological samples containing these analytes are provided. In addition, the pharmacokinetic profile of these compounds in one human who daily consumed an over-the-counter curcuminoid product shows the peak and changes in circulating concentrations achieved by this mode of administration.


Subject(s)
Boranes/chemistry , Diarylheptanoids/blood , Animals , Chromatography, Liquid , Diarylheptanoids/chemistry , Diarylheptanoids/isolation & purification , Healthy Volunteers , Humans , Mass Spectrometry , Mice , Molecular Structure
14.
Microsc Microanal ; 26(2): 258-266, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32160938

ABSTRACT

This paper describes initial experimental results from an extreme ultraviolet (EUV) radiation-pulsed atom probe microscope. Femtosecond-pulsed coherent EUV radiation of 29.6 nm wavelength (41.85 eV photon energy), obtained through high harmonic generation in an Ar-filled hollow capillary waveguide, successfully triggered controlled field ion emission from the apex of amorphous SiO2 specimens. The calculated composition is stoichiometric within the error of the measurement and effectively invariant of the specimen base temperature in the range of 25 K to 150 K. Photon energies available in the EUV band are significantly higher than those currently used in the state-of-the-art near-ultraviolet laser-pulsed atom probe, which enables the possibility of additional ionization and desorption pathways. Pulsed coherent EUV light is a new and potential alternative to near-ultraviolet radiation for atom probe tomography.

15.
Int J Phytoremediation ; 22(7): 774-780, 2020.
Article in English | MEDLINE | ID: mdl-31960704

ABSTRACT

The phytostimulation is a phytoremediation technique that can be used to remediate area contaminated with herbicides. It is necessary to select plants with high capacity to stimulate soil microbial activity. The present work aimed at evaluating seven plant species regarding their ability to phytostimulate soil and enhance the degradation of the herbicides imazethapyr, imazapic and imazapyr in a lowland soil. An Alfisol Albaqualf was cultivated with the following species, Canavalia ensiformis, Glycine max, Oryza sativa cultivar PUITÁ INTA CL, Lolium multiflorum, Vicia sativa and consortium Lotus corniculatus + Trifolium repens. The rhizosphere of these plants and non-rhizospheric (uncultivated soil) as a control were contaminated in laboratory with analytical standart of the three herbicides, at rates of 0, 150, 300 and 750 g a.i. ha-1, in separate assays. Biodegradation was estimated by quantifying C-CO2 production and through analysis of herbicides residues in soil using liquid chromatography. Results show that biodegradation of herbicides imazethapyr, imazapic and imazapyr was higher in vegetated soil than in unvegetated soil. The leguminous species Canavalia ensiformis, Glycine max, Vicia sativa and consortium of Lotus corniculatus + Trifolium repens showed a great capacity to promote soil microbial, resulting in average biodegradation rates of 91, 92 and 93% for herbicides imazethapyr, imazapic and imazapyr in soil, respectively.


Subject(s)
Herbicides , Oryza , Soil Pollutants , Biodegradation, Environmental , Soil
16.
Sensors (Basel) ; 19(20)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614470

ABSTRACT

Single-drop microextraction (SDME) was coupled with surface-enhanced Raman scattering (SERS) to provide sample extraction and pre-concentration for detection of analyte at low concentrations. A gold nanohole array substrate (AuNHAS), fabricated by interference lithography, was used as SERS substrate and para-mercaptobenzoic acid (p-MBA) was tested as a probe molecule, in the concentration range 10-8-10-4 mol L-1. With this approach, a limit of 10-7 mol L-1 was clearly detected. To improve the detection to lower p-MBA concentration, as 10-8 mol L-1, the SDME technique was applied. The p-MBA Raman signature was detected in two performed extractions and its new concentration was determined to be ~4.6 × 10-5 mol L-1. This work showed that coupling SDME with SERS allowed a rapid (5 min) and efficient pre-concentration (from 10-8 mol L-1 to 10-5 mol L-1), detection, and quantification of the analyte of interest, proving to be an interesting analytical tool for SERS applications.

17.
BMC Genomics ; 19(1): 761, 2018 Oct 20.
Article in English | MEDLINE | ID: mdl-30342485

ABSTRACT

BACKGROUND: Cold temperatures and their alleviation affect many plant traits including the abundance of protein coding gene transcripts. Transcript level changes that occur in response to cold temperatures and their alleviation are shared or vary across genotypes. In this study we identify individual transcripts and groups of functionally related transcripts that consistently respond to cold and its alleviation. Genes that respond differently to temperature changes across genotypes may have limited functional importance. We investigate if these genes share functions, and if their genotype-specific gene expression levels change in magnitude or rank across temperatures. RESULTS: We estimate transcript abundances from over 22,000 genes in two unrelated Zea mays inbred lines during and after cold temperature exposure. Genotype and temperature contribute to many genes' abundances. Past cold exposure affects many fewer genes. Genes up-regulated in cold encode many cytokinin glucoside biosynthesis enzymes, transcription factors, signalling molecules, and proteins involved in diverse environmental responses. After cold exposure, protease inhibitors and cuticular wax genes are newly up-regulated, and environmentally responsive genes continue to be up-regulated. Genes down-regulated in response to cold include many photosynthesis, translation, and DNA replication associated genes. After cold exposure, DNA replication and translation genes are still preferentially downregulated. Lignin and suberin biosynthesis are newly down-regulated. DNA replication, reactive oxygen species response, and anthocyanin biosynthesis genes have strong, genotype-specific temperature responses. The ranks of genotypes' transcript abundances often change across temperatures. CONCLUSIONS: We report a large, core transcriptome response to cold and the alleviation of cold. In cold, many of the core suite of genes are up or downregulated to control plant growth and photosynthesis and limit cellular damage. In recovery, core responses are in part to prepare for future stress. Functionally related genes are consistently and greatly up-regulated in a single genotype in response to cold or its alleviation, suggesting positive selection has driven genotype-specific temperature responses in maize.


Subject(s)
Cold Temperature , Gene Expression Profiling , Zea mays/genetics , Environment , Genotype , Glucose/biosynthesis , Photosynthesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Transcription, Genetic , Up-Regulation , Zea mays/cytology , Zea mays/enzymology , Zea mays/metabolism
18.
J Exp Bot ; 69(12): 2937-2952, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29688423

ABSTRACT

Temperate maize was domesticated from its tropical ancestor, teosinte. Whereas temperate maize is an autonomous day-neutral plant, teosinte is an obligate short-day plant that requires uninterrupted long nights to induce flowering. Leaf-derived florigenic signals trigger reproductive growth in both teosinte and temperate maize. To study the genetic mechanisms underlying floral inductive pathways in maize and teosinte, mRNA and small RNA genome-wide expression analyses were conducted on leaf tissue from plants that were induced or not induced to flower. Transcriptome profiles reveal common differentially expressed genes during floral induction, but a comparison of candidate flowering time genes indicates that photoperiod and autonomous pathways act independently. Expression differences in teosinte are consistent with the current paradigm for photoperiod-induced flowering, where changes in circadian clock output trigger florigen production. Conversely, differentially expressed genes in temperate maize link carbon partitioning and flowering, but also show altered expression of circadian clock genes that are distinct from those altered upon photoperiodic induction in teosinte. Altered miRNA399 levels in both teosinte and maize suggest a novel common connection between flowering and phosphorus perception. These findings provide insights into the molecular mechanisms underlying a strengthened autonomous pathway that enabled maize growth throughout temperate regions.


Subject(s)
Flowers/growth & development , Gene Regulatory Networks , Photoperiod , Plant Proteins/genetics , RNA, Plant/genetics , Zea mays/genetics , Domestication , Flowers/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/metabolism , Zea mays/growth & development
19.
Phys Rev Lett ; 120(9): 093002, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29547333

ABSTRACT

Recent advances in high-order harmonic generation have made it possible to use a tabletop-scale setup to produce spatially and temporally coherent beams of light with bandwidth spanning 12 octaves, from the ultraviolet up to x-ray photon energies >1.6 keV. Here we demonstrate the use of this light for x-ray-absorption spectroscopy at the K- and L-absorption edges of solids at photon energies near 1 keV. We also report x-ray-absorption spectroscopy in the water window spectral region (284-543 eV) using a high flux high-order harmonic generation x-ray supercontinuum with 10^{9} photons/s in 1% bandwidth, 3 orders of magnitude larger than has previously been possible using tabletop sources. Since this x-ray radiation emerges as a single attosecond-to-femtosecond pulse with peak brightness exceeding 10^{26} photons/s/mrad^{2}/mm^{2}/1% bandwidth, these novel coherent x-ray sources are ideal for probing the fastest molecular and materials processes on femtosecond-to-attosecond time scales and picometer length scales.

20.
Nature ; 471(7339): 490-3, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21389987

ABSTRACT

Intense femtosecond (10(-15) s) light pulses can be used to transform electronic, magnetic and structural order in condensed-matter systems on timescales of electronic and atomic motion. This technique is particularly useful in the study and in the control of materials whose physical properties are governed by the interactions between multiple degrees of freedom. Time- and angle-resolved photoemission spectroscopy is in this context a direct and comprehensive, energy- and momentum-selective probe of the ultrafast processes that couple to the electronic degrees of freedom. Previously, the capability of such studies to access electron momentum space away from zero momentum was, however, restricted owing to limitations of the available probing photon energy. Here, using femtosecond extreme-ultraviolet pulses delivered by a high-harmonic-generation source, we use time- and angle-resolved photoemission spectroscopy to measure the photoinduced vaporization of a charge-ordered state in the potential excitonic insulator 1T-TiSe(2 )(refs 12, 13). By way of stroboscopic imaging of electronic band dispersions at large momentum, in the vicinity of the edge of the first Brillouin zone, we reveal that the collapse of atomic-scale periodic long-range order happens on a timescale as short as 20 femtoseconds. The surprisingly fast response of the system is assigned to screening by the transient generation of free charge carriers. Similar screening scenarios are likely to be relevant in other photoinduced solid-state transitions and may generally determine the response times. Moreover, as electron states with large momenta govern fundamental electronic properties in condensed matter systems, we anticipate that the experimental advance represented by the present study will be useful to study the ultrafast dynamics and microscopic mechanisms of electronic phenomena in a wide range of materials.

SELECTION OF CITATIONS
SEARCH DETAIL