Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Health Geogr ; 19(1): 3, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32046732

ABSTRACT

BACKGROUND: Vector-borne disease places a high health and economic burden in the American tropics. Comprehensive vector control programs remain the primary method of containing local outbreaks. With limited resources, many vector control operations struggle to serve all affected communities within their districts. In the coastal city of Machala, Ecuador, vector control services, such as application of larvicides and truck-mounted fogging, are delivered through two deployment facilities managed by the Ecuadorian Ministry of Health. Public health professionals in Machala face several logistical issues when delivering mosquito abatement services, namely applying limited resources in ways that will most effectively suppress vectors of malaria, dengue, and encephalitis viruses. METHODS: Using a transportation network analysis framework, we built models of service areas and optimized delivery routes based on distance costs associated with accessing neighborhoods throughout the city. Optimized routes were used to estimate the relative cost of accessing neighborhoods for mosquito control services in Machala, creating a visual tool to guide decision makers and maximize mosquito control program efficiency. Location-allocation analyses were performed to evaluate efficiency gains of moving service deployment to other available locations with respect to distance to service hub, neighborhood population, dengue incidence, and housing condition. RESULTS: Using this framework, we identified different locations for targeting mosquito control efforts, dependent upon management goals and specified risk factors of interest, including human population, housing condition, and reported dengue incidence. Our models indicate that neighborhoods on the periphery of Machala with the poorest housing conditions are the most costly to access. Optimal locations of facilities for deployment of control services change depending on pre-determined management priorities, increasing the population served via inexpensive routes up to 34.9%, and reducing overall cost of accessing neighborhoods up to 12.7%. CONCLUSIONS: Our transportation network models indicate that current locations of mosquito control facilities in Machala are not ideal for minimizing driving distances or maximizing populations served. Services may be optimized by moving vector control operations to other existing public health facilities in Machala. This work represents a first step in creating a spatial tool for planning and critically evaluating the systematic delivery of mosquito control services in Machala and elsewhere.


Subject(s)
Models, Theoretical , Mosquito Control , Mosquito Vectors , Transportation , Animals , Disease Outbreaks , Ecuador/epidemiology , Housing , Humans , Malaria/epidemiology , Mosquito Control/economics , Mosquito Control/methods , Public Health , Risk Factors
2.
BMC Infect Dis ; 14: 610, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25420543

ABSTRACT

BACKGROUND: Dengue fever, a mosquito-borne viral disease, is a rapidly emerging public health problem in Ecuador and throughout the tropics. However, we have a limited understanding of the disease transmission dynamics in these regions. Previous studies in southern coastal Ecuador have demonstrated the potential to develop a dengue early warning system (EWS) that incorporates climate and non-climate information. The objective of this study was to characterize the spatiotemporal dynamics and climatic and social-ecological risk factors associated with the largest dengue epidemic to date in Machala, Ecuador, to inform the development of a dengue EWS. METHODS: The following data from Machala were included in analyses: neighborhood-level georeferenced dengue cases, national census data, and entomological surveillance data from 2010; and time series of weekly dengue cases (aggregated to the city-level) and meteorological data from 2003 to 2012. We applied LISA and Moran's I to analyze the spatial distribution of the 2010 dengue cases, and developed multivariate logistic regression models through a multi-model selection process to identify census variables and entomological covariates associated with the presence of dengue at the neighborhood level. Using data aggregated at the city-level, we conducted a time-series (wavelet) analysis of weekly climate and dengue incidence (2003-2012) to identify significant time periods (e.g., annual, biannual) when climate co-varied with dengue, and to describe the climate conditions associated with the 2010 outbreak. RESULTS: We found significant hotspots of dengue transmission near the center of Machala. The best-fit model to predict the presence of dengue included older age and female gender of the head of the household, greater access to piped water in the home, poor housing condition, and less distance to the central hospital. Wavelet analyses revealed that dengue transmission co-varied with rainfall and minimum temperature at annual and biannual cycles, and we found that anomalously high rainfall and temperatures were associated with the 2010 outbreak. CONCLUSIONS: Our findings highlight the importance of geospatial information in dengue surveillance and the potential to develop a climate-driven spatiotemporal prediction model to inform disease prevention and control interventions. This study provides an operational methodological framework that can be applied to understand the drivers of local dengue risk.


Subject(s)
Aedes , Dengue/epidemiology , Insect Vectors , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , Climate , Dengue/prevention & control , Dengue/transmission , Disease Outbreaks , Ecuador/epidemiology , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Models, Theoretical , Risk Factors , Socioeconomic Factors , Spatio-Temporal Analysis , Time Factors
3.
Am J Trop Med Hyg ; 105(3): 756-765, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34339390

ABSTRACT

Aedes aegypti, the mosquito that transmits arboviral diseases such as dengue (DENV), chikungunya (CHIKV), and Zika viruses (ZIKV), is present in tropical and subtropical regions of the world. Individuals at risk of mosquito-borne disease (MBD) in the urban tropics face daily challenges linked to their socio-environment conditions, such as poor infrastructure, poverty, crowding, and limited access to adequate healthcare. These daily demands induce chronic stress events and dysregulated immune responses. We sought to investigate the role of socio-ecologic risk factors in distress symptoms and their impact on biological responses to MBD in Machala, Ecuador. Between 2017 and 2019, individuals (≥ 18 years) with suspected arbovirus illness (DENV, ZIKV, and CHIKV) from sentinel clinics were enrolled (index cases, N = 28). Cluster investigations of the index case households and people from four houses within a 200-m radius of index home (associate cases, N = 144) were conducted (total N = 172). Hair samples were collected to measure hair cortisol concentration (HCC) as a stress biomarker. Blood samples were collected to measure serum cytokines concentrations of IL-10, IL-8, TNF-α, and TGF-ß. Univariate analyses were used to determine the association of socio-health metrics related to perceived stress scores (PSS), HCC, and immune responses. We found that housing conditions influence PSS and HCC levels in individuals at risk of MBD. Inflammatory cytokine distribution was associated with the restorative phase of immune responses in individuals with low-moderate HCC. These data suggest that cortisol may dampen pro-inflammatory responses and influence activation of the restorative phase of immune responses to arboviral infections.


Subject(s)
Arbovirus Infections/epidemiology , Arbovirus Infections/psychology , Immune System Diseases/complications , Stress, Psychological/complications , Adult , Animals , Arbovirus Infections/immunology , Biomarkers/analysis , Biomarkers/blood , Cohort Studies , Cytokines/blood , Ecosystem , Ecuador/epidemiology , Family Characteristics , Female , Hair/chemistry , Health Services Accessibility , Housing/classification , Housing/standards , Humans , Hydrocortisone/analysis , Hydrocortisone/metabolism , Immune System Diseases/epidemiology , Logistic Models , Male , Retrospective Studies , Sociodemographic Factors , Stress, Psychological/immunology
4.
PLoS Negl Trop Dis ; 15(11): e0009931, 2021 11.
Article in English | MEDLINE | ID: mdl-34784348

ABSTRACT

Arboviruses transmitted by Aedes aegypti (e.g., dengue, chikungunya, Zika) are of major public health concern on the arid coastal border of Ecuador and Peru. This high transit border is a critical disease surveillance site due to human movement-associated risk of transmission. Local level studies are thus integral to capturing the dynamics and distribution of vector populations and social-ecological drivers of risk, to inform targeted public health interventions. Our study examines factors associated with household-level Ae. aegypti presence in Huaquillas, Ecuador, while accounting for spatial and temporal effects. From January to May of 2017, adult mosquitoes were collected from a cohort of households (n = 63) in clusters (n = 10), across the city of Huaquillas, using aspirator backpacks. Household surveys describing housing conditions, demographics, economics, travel, disease prevention, and city services were conducted by local enumerators. This study was conducted during the normal arbovirus transmission season (January-May), but during an exceptionally dry year. Household level Ae. aegypti presence peaked in February, and counts were highest in weeks with high temperatures and a week after increased rainfall. Univariate analyses with proportional odds logistic regression were used to explore household social-ecological variables and female Ae. aegypti presence. We found that homes were more likely to have Ae. aegypti when households had interruptions in piped water service. Ae. aegypti presence was less likely in households with septic systems. Based on our findings, infrastructure access and seasonal climate are important considerations for vector control in this city, and even in dry years, the arid environment of Huaquillas supports Ae. aegypti breeding habitat.


Subject(s)
Aedes/physiology , Mosquito Vectors/physiology , Animal Distribution , Animals , Cities , Climate , Ecosystem , Ecuador , Family Characteristics , Female , Humans , Mosquito Control , Seasons , Temperature
5.
Nat Commun ; 12(1): 1233, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623008

ABSTRACT

Climate drives population dynamics through multiple mechanisms, which can lead to seemingly context-dependent effects of climate on natural populations. For climate-sensitive diseases, such as dengue, chikungunya, and Zika, climate appears to have opposing effects in different contexts. Here we show that a model, parameterized with laboratory measured climate-driven mosquito physiology, captures three key epidemic characteristics across ecologically and culturally distinct settings in Ecuador and Kenya: the number, timing, and duration of outbreaks. The model generates a range of disease dynamics consistent with observed Aedes aegypti abundances and laboratory-confirmed arboviral incidence with variable accuracy (28-85% for vectors, 44-88% for incidence). The model predicted vector dynamics better in sites with a smaller proportion of young children in the population, lower mean temperature, and homes with piped water and made of cement. Models with limited calibration that robustly capture climate-virus relationships can help guide intervention efforts and climate change disease projections.


Subject(s)
Climate Change , Geography , Vector Borne Diseases/epidemiology , Vector Borne Diseases/transmission , Animals , Basic Reproduction Number , Culicidae/physiology , Disease Outbreaks , Ecuador/epidemiology , Humans , Kenya/epidemiology , Models, Biological , Nonlinear Dynamics , Socioeconomic Factors , Spatio-Temporal Analysis , Time Factors
6.
Article in English | MEDLINE | ID: mdl-28883952

ABSTRACT

BACKGROUND: Dengue fever is a rapidly emerging infection throughout the tropics and subtropics with extensive public health burden. Adequate training of healthcare providers is crucial to reducing infection incidence through patient education and collaboration with public health authorities. We examined how public sector healthcare providers in a dengue-endemic region of Ecuador view and manage dengue infections, with a focus on the 2009 World Health Organization (WHO) Dengue Guidelines. METHODS: A 37-item questionnaire of dengue knowledge, attitudes, and practices was developed and administered to dengue healthcare providers in Machala, Ecuador. Survey focus areas included: "Demographics," "Infection and Prevention of Dengue," "Dengue Diagnosis and the WHO Dengue Guide," "Laboratory Testing," "Treatment of Dengue," and "Opinions Regarding Dengue." RESULTS: A total of 76 healthcare providers participated in this study, of which 82 % were medical doctors and 14 % were nurses. Fifty-eight percent of healthcare professionals practiced in ambulatory clinics and 34 % worked in a hospital. Eighty-nine percent of respondents were familiar with the 2009 WHO Dengue Guidelines, and, within that group, 97 % reported that the WHO Dengue Guide was helpful in dengue diagnosis and clinical management. Knowledge gaps identified included Aedes aegypti mosquito feeding habits and dengue epidemiology. Individuals with greater dengue-related knowledge were more likely to consider dengue a major health problem. Only 22 % of respondents correctly reported that patients with comorbidities and dengue without warning signs require hospital admission, and 25 % of providers reported never admitting patients with dengue to the hospital. Twenty percent of providers reported rarely (≤25 % of cases) obtaining laboratory confirmation of dengue infection. Providers reported patient presumptive self-medication as an ongoing problem. Thirty-one percent of healthcare providers reported inadequate access to resources needed to diagnose and treat dengue. CONCLUSION: Participants demonstrated a high level of knowledge of dengue symptoms and treatment, but additional training regarding prevention, diagnosis, and admission criteria is needed. Interventions should not only focus on increasing knowledge, but also encourage review of the WHO Dengue Guidelines, avoidance of presumptive self-medication, and recognition of dengue as a major health problem. This study provided an assessment tool that effectively captured healthcare providers' knowledge and identified critical gaps in practice.

7.
Trans R Soc Trop Med Hyg ; 109(2): 126-33, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25604763

ABSTRACT

BACKGROUND: This project investigates the effectiveness and feasibility of scaling-up an eco-bio-social approach for implementing an integrated community-based approach for dengue prevention in comparison with existing insecticide-based and emerging biolarvicide-based programs in an endemic setting in Machala, Ecuador. METHODS: An integrated intervention strategy (IIS) for dengue prevention (an elementary school-based dengue education program, and clean patio and safe container program) was implemented in 10 intervention clusters from November 2012 to November 2013 using a randomized controlled cluster trial design (20 clusters: 10 intervention, 10 control; 100 households per cluster with 1986 total households). Current existing dengue prevention programs served as the control treatment in comparison clusters. Pupa per person index (PPI) is used as the main outcome measure. Particular attention was paid to social mobilization and empowerment with IIS. RESULTS: Overall, IIS was successful in reducing PPI levels in intervention communities versus control clusters, with intervention clusters in the six paired clusters that followed the study design experiencing a greater reduction of PPI compared to controls (2.2 OR, 95% CI: 1.2 to 4.7). Analysis of individual cases demonstrates that consideration for contexualizing programs and strategies to local neighborhoods can be very effective in reducing PPI for dengue transmission risk reduction. CONCLUSIONS: In the rapidly evolving political climate for dengue control in Ecuador, integration of successful social mobilization and empowerment strategies with existing and emerging biolarvicide-based government dengue prevention and control programs is promising in reducing PPI and dengue transmission risk in southern coastal communities like Machala. However, more profound analysis of social determination of health is called for to assess sustainability prospects.


Subject(s)
Aedes/growth & development , Dengue/prevention & control , Disease Reservoirs/parasitology , Mosquito Control/organization & administration , Public Health , School Health Services/organization & administration , Aedes/parasitology , Animals , Climate , Cluster Analysis , Dengue/transmission , Ecosystem , Ecuador/epidemiology , Feasibility Studies , Humans , Insecticides , Pupa/growth & development , Water/parasitology , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL