Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Neurocrit Care ; 38(1): 71-84, 2023 02.
Article in English | MEDLINE | ID: mdl-36171518

ABSTRACT

BACKGROUND: Brain tissue hypoxia is an independent risk factor for unfavorable outcomes in traumatic brain injury (TBI); however, systemic hyperoxemia encountered in the prevention and/or response to brain tissue hypoxia may also impact risk of mortality. We aimed to identify temporal patterns of partial pressure of oxygen in brain tissue (PbtO2), partial pressure of arterial oxygen (PaO2), and PbtO2/PaO2 ratio associated with mortality in children with severe TBI. METHODS: Data were extracted from the electronic medical record of a quaternary care children's hospital with a level I trauma center for patients ≤ 18 years old with severe TBI and the presence of PbtO2 and/or intracranial pressure monitors. Temporal analyses were performed for the first 5 days of hospitalization by using locally estimated scatterplot smoothing for less than 1,000 observations and generalized additive models with integrated smoothness estimation for more than 1,000 observations. RESULTS: A total of 138 intracranial pressure-monitored patients with TBI (median 5.0 [1.9-12.8] years; 65% boys; admission Glasgow Coma Scale score 4 [3-7]; mortality 18%), 71 with PbtO2 monitors and 67 without PbtO2 monitors were included. Distinct patterns in PbtO2, PaO2, and PbtO2/PaO2 were evident between survivors and nonsurvivors over the first 5 days of hospitalization. Time-series analyses showed lower PbtO2 values on day 1 and days 3-5 and lower PbtO2/PaO2 ratios on days 1, 2, and 5 among patients who died. Analysis of receiver operating characteristics curves using Youden's index identified a PbtO2 of 30 mm Hg and a PbtO2/PaO2 ratio of 0.12 as the cut points for discriminating between survivors and nonsurvivors. Univariate logistic regression identified PbtO2 < 30 mm Hg, hyperoxemia (PaO2 ≥ 300 mm Hg), and PbtO2/PaO2 ratio < 0.12 to be independently associated with mortality. CONCLUSIONS: Lower PbtO2, higher PaO2, and lower PbtO2/PaO2 ratio, consistent with impaired oxygen diffusion into brain tissue, were associated with mortality in this cohort of children with severe TBI. These results corroborate our prior work that suggests targeting a higher PbtO2 threshold than recommended in current guidelines and highlight the potential use of the PbtO2/PaO2 ratio in the management of severe pediatric TBI.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Hypoxia, Brain , Male , Humans , Child , Adolescent , Female , Brain , Brain Injuries, Traumatic/complications , Brain Injuries/complications , Oxygen/analysis , Hypoxia, Brain/complications , Hypoxia , Intracranial Pressure/physiology
2.
Pediatr Crit Care Med ; 23(6): 425-434, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35283451

ABSTRACT

OBJECTIVES: The microbiome may be affected by trauma and critical illness. Many studies of the microbiome in critical illness are restricted to a single body site or time point and confounded by preexisting conditions. We report temporal and spatial alterations in the microbiome of previously healthy children with severe traumatic brain injury (TBI). DESIGN: We collected oral, rectal, and skin swabs within 72 hours of admission and then twice weekly until ICU discharge. Samples were analyzed by 16S rRNA gene amplicon sequencing. Children undergoing elective outpatient surgery served as controls. Alpha and beta diversity comparisons were performed with Phyloseq, and differentially abundant taxa were predicted using Analysis of Composition of Microbiomes. SETTING: Five quaternary-care PICUs. PATIENTS: Patients less than 18 years with severe TBI requiring placement of an intracranial pressure monitor. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Three hundred twenty-seven samples were analyzed from 23 children with severe TBI and 35 controls. The community composition of initial oral (F = 3.2756, R2 = 0.0535, p = 0.012) and rectal (F = 3.0702, R2 = 0.0649, p = 0.007) samples differed between TBI and control patients. Rectal samples were depleted of commensal bacteria from Ruminococcaceae, Bacteroidaceae, and Lachnospiraceae families and enriched in Staphylococcaceae after TBI (p < 0.05). In exploratory analyses, antibiotic exposure, presence of an endotracheal tube, and occurrence of an infection were associated with greater differences of the rectal and oral microbiomes between TBI patients and healthy controls, whereas enteral nutrition was associated with smaller differences (p < 0.05). CONCLUSIONS: The microbiome of children with severe TBI is characterized by early depletion of commensal bacteria, loss of site specificity, and an enrichment of potential pathogens. Additional studies are needed to determine the impact of these changes on clinical outcomes.


Subject(s)
Brain Injuries, Traumatic , Microbiota , Bacteria , Child , Critical Illness , Humans , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL