ABSTRACT
Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1-5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
Subject(s)
COVID-19 , GTPase-Activating Proteins , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors , Host Microbial Interactions , SARS-CoV-2 , Alleles , Animals , COVID-19/complications , COVID-19/genetics , COVID-19/immunology , COVID-19/physiopathology , Disease Models, Animal , GTPase-Activating Proteins/antagonists & inhibitors , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Genetic Predisposition to Disease , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Japan , Lung/pathology , Macrophages , Mesocricetus , Middle Aged , Pneumonia/complications , Pyrazoles/pharmacology , RNA-Seq , SARS-CoV-2/pathogenicity , Viral Load , Weight LossABSTRACT
BACKGROUND: Renal impairment is a predictor of coronavirus disease (COVID-19) severity. No studies have compared COVID-19 outcomes in patients with chronic kidney disease (CKD) and patients with impaired renal function without a prior diagnosis of CKD. This study aimed to identify the impact of pre-existing impaired renal function without CKD on COVID-19 outcomes. METHODS: This retrospective study included 3,637 patients with COVID-19 classified into three groups by CKD history and estimated glomerular filtration rate (eGFR) on referral: Group 1 (n = 2,460), normal renal function without a CKD history; Group 2 (n = 905), impaired renal function without a CKD history; and Group 3 (n = 272), history of CKD. We compared the clinical characteristics of these groups and assessed the effect of CKD and impaired renal function on critical outcomes (requirement for respiratory support with high-flow oxygen devices, invasive mechanical ventilation, or extracorporeal membrane oxygen, and death during hospitalization) using multivariable logistic regression. RESULTS: The prevalence of comorbidities (hypertension, diabetes, and cardiovascular disease) and incidence of inflammatory responses (white blood counts, and C-reactive protein, procalcitonin, and D-dimer levels) and complications (bacterial infection and heart failure) were higher in Groups 2 and 3 than that in Group 1. The incidence of critical outcomes was 10.8%, 17.7%, and 26.8% in Groups 1, 2, and 3, respectively. The mortality rate and the rate of requiring IMV support was lowest in Group 1 and highest in Group 3. Compared with Group 1, the risk of critical outcomes was higher in Group 2 (adjusted odds ratio [aOR]: 1.32, 95% confidence interval [CI]: 1.03-1.70, P = 0.030) and Group 3 (aOR: 1.94, 95% CI: 1.36-2.78, P < 0.001). Additionally, the eGFR was significantly associated with critical outcomes in Groups 2 (odds ratio [OR]: 2.89, 95% CI: 1.64-4.98, P < 0.001) and 3 (OR: 1.87, 95% CI: 1.08-3.23, P = 0.025) only. CONCLUSIONS: Clinicians should consider pre-existing CKD and impaired renal function at the time of COVID-19 diagnosis for the management of COVID-19.
Subject(s)
COVID-19 , Glomerular Filtration Rate , Renal Insufficiency, Chronic , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Comorbidity , COVID-19/complications , COVID-19/mortality , COVID-19/physiopathology , COVID-19/epidemiology , East Asian People , Japan/epidemiology , Prognosis , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Retrospective Studies , SARS-CoV-2ABSTRACT
Mycobacterium avium complex (MAC) is considered a paramount microbe, especially in East Asia, including Japan. The commonly used commercial Minimum Inhibitory Concentrations (MIC) assay using Middlebrook 7H9 (7H9) medium deviates from the latest Clinical and Laboratory Standards Institute (CLSI) guidelines. Alternatively, measurement with cation-adjusted Mueller-Hinton broth (CAMHB) that conforms to CLSI standards is not yet widely available. Following the approval and commercialization of amikacin liposome inhalation suspension (ALIS) in 2021, a more precise evaluation of amikacin (AMK) susceptibility in MAC is necessary for treatment decisions. In the present study, 33 sputum samples were extracted from 27 patients, and MICs of AMK were compared between the frequently used 7H9 and the recommended CAMHB of the isolated MAC strains. The history of exposure to aminoglycosides for each sample was also added as clinical information. The findings indicated that there was only an 18% concordance rate in MIC between the two media, with 19 samples (58%) indicating lower MICs in 7H9 relative to CAMHB. The 17 samples had a history of exposure to aminoglycosides for periods ranging from 1.5 to 28 months. Specifically, 10 samples were exposed to amikacin by inhalation and intravenous injection, and the remaining seven samples had a history of ALIS inhalation. Samples with a prior utilization of aminoglycosides were significantly predisposed to developing resistance to ALIS compared to those without such a history (P = 0.046). Physicians are encouraged to scrutinize the findings of susceptibility testing utilizing CLSI-endorsed MIC assay using CAMHB medium to ascertain the optimal therapeutic approach.
Subject(s)
Lung Diseases , Mycobacterium avium-intracellulare Infection , Humans , Amikacin/pharmacology , Amikacin/therapeutic use , Mycobacterium avium Complex , Mycobacterium avium-intracellulare Infection/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Lung Diseases/microbiology , Culture Media , Microbial Sensitivity TestsABSTRACT
BACKGROUND: Computed tomography (CT) imaging and artificial intelligence (AI)-based analyses have aided in the diagnosis and prediction of the severity of COVID-19. However, the potential of AI-based CT quantification of pneumonia in assessing patients with COVID-19 has not yet been fully explored. This study aimed to investigate the potential of AI-based CT quantification of COVID-19 pneumonia to predict the critical outcomes and clinical characteristics of patients with residual lung lesions. METHODS: This retrospective cohort study included 1,200 hospitalized patients with COVID-19 from four hospitals. The incidence of critical outcomes (requiring the support of high-flow oxygen or invasive mechanical ventilation or death) and complications during hospitalization (bacterial infection, renal failure, heart failure, thromboembolism, and liver dysfunction) was compared between the groups of pneumonia with high/low-percentage lung lesions, based on AI-based CT quantification. Additionally, 198 patients underwent CT scans 3 months after admission to analyze prognostic factors for residual lung lesions. RESULTS: The pneumonia group with a high percentage of lung lesions (N = 400) had a higher incidence of critical outcomes and complications during hospitalization than the low percentage group (N = 800). Multivariable analysis demonstrated that AI-based CT quantification of pneumonia was independently associated with critical outcomes (adjusted odds ratio [aOR] 10.5, 95% confidence interval [CI] 5.59-19.7), as well as with oxygen requirement (aOR 6.35, 95% CI 4.60-8.76), IMV requirement (aOR 7.73, 95% CI 2.52-23.7), and mortality rate (aOR 6.46, 95% CI 1.87-22.3). Among patients with follow-up CT scans (N = 198), the multivariable analysis revealed that the pneumonia group with a high percentage of lung lesions on admission (aOR 4.74, 95% CI 2.36-9.52), older age (aOR 2.53, 95% CI 1.16-5.51), female sex (aOR 2.41, 95% CI 1.13-5.11), and medical history of hypertension (aOR 2.22, 95% CI 1.09-4.50) independently predicted persistent residual lung lesions. CONCLUSIONS: AI-based CT quantification of pneumonia provides valuable information beyond qualitative evaluation by physicians, enabling the prediction of critical outcomes and residual lung lesions in patients with COVID-19.
Subject(s)
COVID-19 , Pneumonia , Humans , Female , COVID-19/diagnostic imaging , COVID-19/pathology , Artificial Intelligence , Retrospective Studies , Japan/epidemiology , SARS-CoV-2 , Lung/pathology , Pneumonia/pathology , Tomography, X-Ray Computed/methods , OxygenABSTRACT
An association between coronavirus disease 2019 (COVID-19) and the ABO blood group has been reported. However, such an association has not been studied in the Japanese population on a large scale. Little is known about the association between COVID-19 and ABO genotype. This study investigated the association between COVID-19 and ABO blood group/genotype in a large Japanese population. All Japanese patients diagnosed with COVID-19 were recruited through the Japan COVID-19 Task Force between February 2020 and October 2021. We conducted a retrospective cohort study involving 1790 Japanese COVID-19 patients whose DNA was used for a genome-wide association study. We compared the ABO blood group/genotype in a healthy population (n = 611, control) and COVID-19 patients and then analyzed their associations and clinical outcomes. Blood group A was significantly more prevalent (41.6% vs. 36.8%; P = 0.038), and group O was significantly less prevalent (26.2% vs. 30.8%; P = 0.028) in the COVID-19 group than in the control group. Moreover, genotype OO was significantly less common in the COVID-19 group. Furthermore, blood group AB was identified as an independent risk factor for most severe diseases compared with blood group O [aOR (95% CI) = 1.84 (1.00-3.37)]. In ABO genotype analysis, only genotype AB was an independent risk factor for most severe diseases compared with genotype OO. Blood group O is protective, whereas group A is associated with the risk of infection. Moreover, blood group AB is associated with the risk of the "most" severe disease.
ABSTRACT
AIM: Diabetes mellitus (DM) is a known risk factor for severe coronavirus disease 2019 (COVID-19), but the clinical impact of undiagnosed diabetes and prediabetes in COVID-19 are unclear particularly in Japan. We clarify the difference in clinical characteristics, including age, sex, body mass index and co-morbidities, laboratory findings and critical outcomes, in a large Japanese COVID-19 cohort without diabetes, with prediabetes, undiagnosed diabetes and diagnosed diabetes, and to identify associated risk factors. MATERIALS AND METHODS: This multicentre, retrospective cohort study used the Japan COVID-19 Task Force database, which included data on 2430 hospitalized COVID-19 patients from over 70 hospitals from February 2020 to October 2021. The prevalence of prediabetes, undiagnosed diabetes and diagnosed diabetes were estimated based on HbA1c levels or a clinical diabetes history. Critical outcomes were defined as the use of high-flow oxygen, invasive positive-pressure ventilation or extracorporeal membrane oxygenation, or death during hospitalization. RESULTS: Prediabetes, undiagnosed diabetes and diagnosed diabetes were observed in 40.9%, 10.0% and 23.0%, respectively. Similar to diagnosed diabetes, prediabetes and undiagnosed diabetes were risk factors for critical COVID-19 outcomes (adjusted odds ratio [aOR] [95% CI]: 2.13 [1.31-3.48] and 4.00 [2.19-7.28], respectively). HbA1c was associated with COVID-19 severity in prediabetes patients (aOR [95% CI]: 11.2 [3.49-36.3]), but not other groups. CONCLUSIONS: We documented the clinical characteristics and outcomes of Japanese COVID-19 patients according to HbA1c levels or diabetes co-morbidity. As well as undiagnosed and diagnosed diabetes, physicians should be aware of prediabetes related to COVID-19 severity.
Subject(s)
COVID-19 , Diabetes Mellitus , Humans , Clinical Relevance , Retrospective Studies , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , Japan/epidemiology , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiologyABSTRACT
OBJECTIVES: We investigated the occurrence of non-respiratory bacterial and fungal secondary infections, causative organisms, impact on clinical outcomes, and association between the secondary pathogens and mortality in hospitalized patients with coronavirus disease 2019 (COVID-19). METHODS: This was a retrospective cohort study that included data from inpatients with COVID-19 from multiple centers participating in the Japan COVID-19 Taskforce (April 2020 to May 2021). We obtained demographic, epidemiological, and microbiological data throughout the course of hospitalization and analyzed the cases of COVID-19 complicated by non-respiratory bacterial infections. RESULTS: Of the 1914 patients included, non-respiratory bacterial infections with COVID-19 were diagnosed in 81 patients (4.2%). Of these, 59 (3.1%) were secondary infections. Bacteremia was the most frequent bacterial infection, occurring in 33 cases (55.9%), followed by urinary tract infections in 16 cases (27.1%). Staphylococcus epidermidis was the most common causative organism of bacteremia. Patients with COVID-19 with non-respiratory secondary bacterial infections had significantly higher mortality, and a multivariate logistic regression analysis demonstrated that those with bacteremia (aOdds Ratio = 15.3 [5.97-39.1]) were at higher risk of death. Multivariate logistic regression analysis showed that age, male sex, use of steroids to treat COVID-19, and intensive care unit admission increased the risk for nosocomial bacteremia. CONCLUSIONS: Secondary bacteremia is an important complication that may lead to poor prognosis in cases with COVID-19. An appropriate medical management strategy must be established, especially for patients with concomitant predisposing factors.
Subject(s)
Bacteremia , Bacterial Infections , COVID-19 , Coinfection , Mycoses , Humans , Male , COVID-19/complications , COVID-19/epidemiology , Retrospective Studies , Coinfection/epidemiology , Bacteremia/drug therapy , Bacteremia/epidemiology , Bacteremia/microbiology , Bacterial Infections/microbiology , Mycoses/microbiology , COVID-19 TestingABSTRACT
BACKGROUND: The long-term exercise tolerance changes in patients with nontuberculous mycobacterial pulmonary disease (NTM-PD) are of great interest because of its chronic course. This study aimed to characterize the associations between changes over time in six-minute walking test (6MWT) parameters and clinical parameters in patients with NTM-PD. METHODS: Overall, 188 patients with NTM-PD, visiting outpatient clinics at Keio University Hospital from April 2012 to March 2020 were included in the study. Data were collected using the St. George's Respiratory Questionnaire (SGRQ), pulmonary function test (PFT), blood tests, and the 6MWT at registration and at least once after that. The association of the anchors and clinical indicators with the 6MWT parameters was assessed. RESULTS: The median age [interquartile range] of the patients was 67 [63-74] years. The median baseline six-minute walk distance (6MWD) and final Borg scale (FBS) were 413 [361-470] m and 1 [0-2], respectively. In the correlation analysis, ΔSGRQ total/year (yr), Δforced vital capacity (FVC, % predicted)/yr, Δforced expiratory volume in 1 s (FEV1, % predicted)/yr, and Δdiffusing capacity for carbon monoxide (DLCO, % predicted)/yr correlated with both Δ6MWD/yr and ΔFBS/yr in the longitudinal analysis (|Rho| > 0.20). When stratified into three quantiles of changes in each anchor, the 6MWT parameters worsened over time in the bottom 25% group by mixed-effects model. Specifically, Δ6MWD was affected by SGRQ activity, SGRQ impacts, PFT (FVC, FEV1, and DLCO), and C-reactive protein (CRP). ΔFBS was affected by all SGRQ components, total score, and PFT. Anchor scores and variables at baseline that worsened Δ6MWD were higher SGRQ scores, lower FVC (% predicted), lower DLCO (% predicted), higher Krebs von den Lungen-6, old age, and undergoing treatment at registration. Similarly, these clinical parameters and elevated CRP, excluding undergoing treatment at registration, worsened ΔFBS. CONCLUSIONS: The decreased walking distance and exacerbation of dyspnea on exertion over time in patients with NTM-PD may reflect a deterioration of health-related quality of life and pulmonary function. Thus, the change in 6MWT over time can be used as an indicator to accurately assess the patient's condition and tailor their healthcare environment.
Subject(s)
Lung Diseases , Mycobacterium Infections, Nontuberculous , Pulmonary Disease, Chronic Obstructive , Aged , Humans , Lung , Mycobacterium Infections, Nontuberculous/diagnosis , Quality of Life , Walk Test , Walking , Middle AgedABSTRACT
BACKGROUND: Although cases of respiratory bacterial infections associated with coronavirus disease 2019 (COVID-19) have often been reported, their impact on the clinical course remains unclear. Herein, we evaluated and analyzed the complication rates of bacterial infections, causative organisms, patient backgrounds, and clinical outcome in Japanese patients with COVID-19. METHODS: We performed a retrospective cohort study that included inpatients with COVID-19 from multiple centers participating in the Japan COVID-19 Taskforce (April 2020 to May 2021) and obtained demographic, epidemiological, and microbiological results and the clinical course and analyzed the cases of COVID-19 complicated by respiratory bacterial infections. RESULTS: Of the 1,863 patients with COVID-19 included in the analysis, 140 (7.5%) had respiratory bacterial infections. Community-acquired co-infection at COVID-19 diagnosis was uncommon (55/1,863, 3.0%) and was mainly caused by Staphylococcus aureus, Klebsiella pneumoniae and Streptococcus pneumoniae. Hospital-acquired bacterial secondary infections, mostly caused by Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were diagnosed in 86 patients (4.6%). Severity-associated comorbidities were frequently observed in hospital-acquired secondary infection cases, including hypertension, diabetes, and chronic kidney disease. The study results suggest that the neutrophil-lymphocyte ratio (> 5.28) may be useful in diagnosing complications of respiratory bacterial infections. COVID-19 patients with community-acquired or hospital-acquired secondary infections had significantly increased mortality. CONCLUSIONS: Respiratory bacterial co-infections and secondary infections are uncommon in patients with COVID-19 but may worsen outcomes. Assessment of bacterial complications is important in hospitalized patients with COVID-19, and the study findings are meaningful for the appropriate use of antimicrobial agents and management strategies.
Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Community-Acquired Infections , Cross Infection , Respiratory Tract Infections , Staphylococcal Infections , Humans , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Retrospective Studies , Coinfection/epidemiology , COVID-19 Testing , East Asian People , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Respiratory Tract Infections/epidemiology , Community-Acquired Infections/epidemiology , Disease ProgressionABSTRACT
BACKGROUND: Respiratory symptoms are associated with coronavirus disease 2019 (COVID-19) outcomes. However, the impacts of upper and lower respiratory symptoms on COVID-19 outcomes in the same population have not been compared. The objective of this study was to characterize upper and lower respiratory symptoms and compare their impacts on outcomes of hospitalized COVID-19 patients. METHODS: This was a multicenter, retrospective cohort study; the database from the Japan COVID-19 Task Force was used. A total of 3314 COVID-19 patients were included in the study, and the data on respiratory symptoms were collected. The participants were classified according to their respiratory symptoms (Group 1: no respiratory symptoms, Group 2: only upper respiratory symptoms, Group 3: only lower respiratory symptoms, and Group 4: both upper and lower respiratory symptoms). The impacts of upper and lower respiratory symptoms on the clinical outcomes were compared. The primary outcome was the percentage of patients with poor clinical outcomes, including the need for oxygen supplementation via high-flow oxygen therapy, mechanical ventilation, and extracorporeal membrane oxygenation or death. RESULTS: Of the 3314 COVID-19 patients, 605, 1331, 1229, and 1149 were classified as Group 1, Group 2, Group 3, and Group 4, respectively. In univariate analysis, patients in Group 2 had the best clinical outcomes among all groups (odds ratio [OR]: 0.21, 95% confidence interval [CI]: 0.11-0.39), while patients in Group 3 had the worst outcomes (OR: 3.27, 95% CI: 2.43-4.40). Group 3 patients had the highest incidence of pneumonia, other complications due to secondary infections, and thrombosis during the clinical course. CONCLUSIONS: Upper and lower respiratory tract symptoms had vastly different impacts on the clinical outcomes of COVID-19.
Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Retrospective Studies , Respiration, Artificial , Oxygen Inhalation TherapyABSTRACT
A 83-year-old man underwent thyroplasty with arytenoid adduction for right recurrent laryngeal nerve palsy 1 year ago. He had been suffering from hemosputum and cough for last 2 months, and was referred to our hospital for medical examination. Laryngoscopy and neck computed tomography showed subglottic nodule. No evidence of malignancy was noted by a transbronchial biopsy of subglottic nodule. Since subglottic nodule grew rapidly during 2 months observation period, subglottic nodule resection was performed by bronchoscope. Histopathologic examination revealed that the tumor was suture granuloma with no evidence of malignancy. Cervical abscess as a complication of subglottic suture granuloma resection was occurred, because of suture material for arytenoid adduction and the injury of mucous membrane for removing the granuloma with the fenestration of thyroid cartilage for thyroplasty.
Subject(s)
Laryngoplasty , Abscess/diagnostic imaging , Abscess/etiology , Abscess/surgery , Aged, 80 and over , Arytenoid Cartilage/diagnostic imaging , Arytenoid Cartilage/surgery , Granuloma , Humans , Male , SuturesABSTRACT
Increasing evidence indicates that obesity is a risk factor for increased severity of influenza virus infection. However, its precise immunological mechanism is not fully understood. To investigate this, diet-induced obese (DIO) mice were established by feeding C57BL/6 male mice a high-fat diet for 16 weeks. DIO and lean control mice were infected intranasally with 3000â¯pfu of influenza A virus (IAV) (PR8/H1N1). Interestingly, we found adipose tissue located along the bronchus in naïve DIO mice. In addition, the Nos2 level was significantly higher and Arg1 level was significantly lower in lung macrophages of naïve DIO mice, consistent with an M1-skewed phenotype. The survival rate and body weight of DIO mice infected with IAV were significantly lower than those of lean control mice and associated with higher viral load in the lungs of DIO mice. Histopathological analysis demonstrated higher numbers of inflammatory cells in the lungs of DIO mice after IAV infection. Levels of cytokines, including TNF-α, IL-6, IL-10, and type I IFN (IFN-α and IFN-ß), in bronchoalveolar lavage fluid (BALF) were altered after IAV infection; in particular, IFN-α and IFN-ß levels were significantly suppressed in the BALF of DIO mice. In vitro, bone marrow-derived macrophages were stimulated with ligands of toll-like receptor (TLR) 7/8, a pattern recognition receptor for single-stranded RNA, and levels of TNF-α, IL-6, and IL-10 were similarly altered. In addition, levels of IFN-α and IFN-ß were significantly lower in culture supernatants of alveolar macrophages sorted from naïve DIO mice and infected with IAV, compared to those in macrophages sorted from lean control mice. Collectively, these results suggest that macrophages may be the main contributors to poor outcomes of influenza virus infection in obesity.
Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Interferon-alpha/immunology , Interferon-beta/immunology , Obesity/complications , Orthomyxoviridae Infections/complications , Animals , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/virology , Disease Models, Animal , Humans , Influenza, Human/complications , Influenza, Human/immunology , Influenza, Human/virology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Male , Mice , Mice, Inbred C57BL , Obesity/immunology , Obesity/virology , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virologyABSTRACT
OBJECTIVES: To assess the value of serum ferritin and Krebs von den Lungen-6 (KL-6) levels for predicting severe COVID-19 (death or requirement for invasive mechanical ventilation [IMV]/high-flow oxygen). METHODS: Data were analyzed on 2495 patients with COVID-19 from February 2020 to November 2022 using data from a nationwide COVID-19 database. RESULTS: Patients with high KL-6 and low ferritin levels were older with more comorbidities and higher mortality rates, whereas those with high ferritin and low KL-6 levels were younger, predominantly male, and more likely to need IMV. A high level of both markers was strongly associated with critical outcomes (adjusted odds ratio: 13.6, 95% confidence interval: 8.58-21.5). The combination of both markers had higher predictive value than either marker alone (area under the curve: 0.709, 0.745, and 0.781 for KL-6, ferritin, and KL-6 + ferritin, respectively). CONCLUSIONS: The combination of both markers accurately predicted COVID-19 severity.
ABSTRACT
BACKGROUND: Research on whether gastrointestinal symptoms correlate with the severity of Coronavirus Disease 2019 (COVID-19) has been inconclusive. This study aimed to clarify any associations between gastrointestinal symptoms and the prognosis of COVID-19. METHODS: We collected data from the Japanese nationwide registry for COVID-19 to conduct a retrospective cohort study. Data from 3498 Japanese COVID-19 patients, diagnosed at 74 facilities between February 2020 and August 2022, were analyzed in this study. Hospitalized patients were followed up until discharge or transfer to another hospital. Outpatients were observed until the end of treatment. Associations between gastrointestinal symptoms and clinical outcomes were investigated using multivariable-adjusted logistic regression models. RESULTS: The prevalence of diarrhea, nausea/vomiting, abdominal pain, and melena were 16.6% (581/3498), 8.9% (311/3498), 3.5% (121/3498), and 0.7% (23/3498), respectively. In the univariable analysis, admission to intensive care unit (ICU) and requirement for mechanical ventilation were less common in patients with diarrhea than those without (ICU, 15.7% vs. 20.6% (p = 0.006); mechanical ventilation, 7.9% vs. 11.4% (p = 0.013)). In the multivariable-adjusted analysis, diarrhea was associated with lower likelihood of ICU admission (adjusted odds ratio (aOR), 0.70; 95% confidence interval (CI), 0.53-0.92) and mechanical ventilation (aOR, 0.61; 95% CI, 0.42-0.89). Similar results were obtained in a sensitivity analysis with another logistic regression model that adjusted for 14 possible covariates with diarrhea (ICU; aOR, 0.70; 95% CI, 0.53-0.93; mechanical ventilation; aOR 0.62; 95% CI, 0.42-0.92). CONCLUSIONS: Diarrhea was associated with better clinical outcomes in COVID-19 patients.
Subject(s)
COVID-19 , Gastrointestinal Diseases , Humans , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Retrospective Studies , Japan/epidemiology , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/etiology , Diarrhea/epidemiology , Diarrhea/etiology , Patient Acuity , RegistriesABSTRACT
The effect of preexisting hypertension on coronavirus disease 2019 (COVID-19) prognosis remains controversial. Additionally, no studies have compared the association between blood pressure (BP) indices on admission and COVID-19 outcomes using preexisting hypertension status. Therefore, this study aimed to investigate the association between preexisting hypertension and COVID-19 outcomes in Japanese patients with COVID-19 and assess the impact of BP indices on admission on clinical outcomes in patients with and without preexisting hypertension. Preexisting hypertension presence was confirmed based on the patient's clinical history. Critical outcomes were defined as high-flow oxygen use, non-invasive and invasive positive-pressure ventilation, extracorporeal membrane oxygenation, or death during hospitalization. Preexisting hypertension was observed in 64.6% of the patients. Multivariable logistic regression analysis of severe COVID-19 risk factors indicated that preexisting hypertension was independently associated with critical outcomes [adjusted odds ratio (OR): 1.35; 95% confidence interval (CI): 1.05-1.73]. Low or high BP and high pulse pressure on admission were associated with critical outcomes in patients without preexisting hypertension [OR for systolic BP < 100 mmHg: 2.13, 95% CI: 1.21-3.75; OR for high BP stage 2 (160-179 systolic and/or 100-109 mmHg diastolic BP): 2.13, 95% CI: 1.27-3.58; OR for pulse pressure ≥60 mmHg: 1.68, 95% CI: 1.14-2.48]. Preexisting hypertension is a risk factor for critical outcomes in Japanese patients with COVID-19. BP indices are useful biomarkers for predicting COVID-19 outcomes, particularly in patients without preexisting hypertension. Thus, hypertension history, systolic BP, and pulse pressure should be assessed to predict severe COVID-19 outcomes.
Subject(s)
COVID-19 , Hypertension , Humans , Blood Pressure/physiology , Japan/epidemiology , Prognosis , COVID-19/complicationsABSTRACT
The low vertebral bone computed tomography (CT) Hounsfield unit values measured on CT scans reflect low bone mineral density (BMD) and are known as diagnostic indicators for osteoporosis. The potential prognostic significance of low BMD defined by vertebral bone CT values for the coronavirus disease 2019 (COVID-19) remains unclear. This study aimed to assess the impact of BMD on the clinical outcome in Japanese patients with COVID-19 and evaluate the association between BMD and critical outcomes, such as high-flow nasal cannula, non-invasive and invasive positive pressure ventilation, extracorporeal membrane oxygenation, or death. We examined the effects of COVID-19 severity on the change of BMD over time. This multicenter retrospective cohort study enrolled 1132 inpatients with COVID-19 from the Japan COVID-19 Task Force database between February 2020 and September 2022. The bone CT values of the 4th, 7th, and 10th thoracic vertebrae were measured from chest CT images. The average of these values was defined as BMD. Furthermore, a comparative analysis was conducted between the BMD on admission and its value 3 months later. The low BMD group had a higher proportion of critical outcomes than did the high BMD group. In a subanalysis stratifying patients by epidemic wave according to onset time, critical outcomes were higher in the low BMD group in the 1st-4th waves. Multivariable logistic analysis of previously reported factors associated with COVID-19 severity revealed that low BMD, chronic kidney disease, and diabetes were independently associated with critical outcomes. At 3 months post-infection, patients with oxygen demand during hospitalization showed markedly decreased BMD than did those on admission. Low BMD in patients with COVID-19 may help predict severe disease after the disease onset. BMD may decrease over time in patients with severe COVID-19, and the impact on sequelae symptoms should be investigated in the future.
Subject(s)
Bone Density , COVID-19 , SARS-CoV-2 , Tomography, X-Ray Computed , Humans , COVID-19/diagnostic imaging , Bone Density/physiology , Female , Male , Middle Aged , Retrospective Studies , Aged , Biomarkers , Prognosis , Spine/diagnostic imaging , Spine/physiopathology , Thoracic Vertebrae/diagnostic imaging , Thoracic Vertebrae/physiopathology , Japan/epidemiologyABSTRACT
Studying the genetic regulation of protein expression (through protein quantitative trait loci (pQTLs)) offers a deeper understanding of regulatory variants uncharacterized by mRNA expression regulation (expression QTLs (eQTLs)) studies. Here we report cis-eQTL and cis-pQTL statistical fine-mapping from 1,405 genotyped samples with blood mRNA and 2,932 plasma samples of protein expression, as part of the Japan COVID-19 Task Force (JCTF). Fine-mapped eQTLs (n = 3,464) were enriched for 932 variants validated with a massively parallel reporter assay. Fine-mapped pQTLs (n = 582) were enriched for missense variations on structured and extracellular domains, although the possibility of epitope-binding artifacts remains. Trans-eQTL and trans-pQTL analysis highlighted associations of class I HLA allele variation with KIR genes. We contrast the multi-tissue origin of plasma protein with blood mRNA, contributing to the limited colocalization level, distinct regulatory mechanisms and trait relevance of eQTLs and pQTLs. We report a negative correlation between ABO mRNA and protein expression because of linkage disequilibrium between distinct nearby eQTLs and pQTLs.
ABSTRACT
BACKGROUND ï¼ AIMS: Muscle quantification using chest computed tomography (CT) is a useful prognostic biomarker for coronavirus disease 2019 (COVID-19). However, no studies have evaluated the clinical course through comprehensive assessment of the pectoralis and erector spinae muscles. Therefore, we compared the impact of the areas and densities of these muscles on COVID-19 infection outcome. METHODS: This multicenter retrospective cohort study was conducted by the COVID-19 Task Force. A total of 1410 patients with COVID-19 were included, and data on the area and density of the pectoralis and erector spinae muscles on chest CT were collected. The impact of each muscle parameter on the clinical outcome of COVID-19 was stratified according to sex. The primary outcome was the percentage of patients with severe disease, including those requiring oxygen supplementation and those who died. Additionally, 167 patients were followed up for changes in muscle parameters at three months and for the clinical characteristics in case of reduced CT density. RESULTS: For both muscles, low density rather than muscle area was associated with COVID-19 severity. Regardless of sex, lower erector spinae muscle density was associated with more severe disease than pectoralis muscle density. The muscles were divided into two groups using the receiver operating characteristic curve of CT density, and the population was classified into four (Group A: high CT density for both muscles, Group B: low CT density for pectoralis and high for erector spinae muscle. Group C: high CT density for pectoralis and low for erector spinae muscle, Group D: low CT density for both muscles). In univariate analysis, Group D patients exhibited worse outcomes than Group A (OR: 2.96, 95% CI: 2.03-4.34 in men; OR: 3.02, 95% CI: 2.66-10.4 in women). Multivariate analysis revealed that men in Group D had a significantly more severe prognosis than those in Group A (OR: 1.82, 95% CI: 1.16-2.87). Moreover, Group D patients tended to have the highest incidence of other complications due to secondary infections and acute kidney injury during the clinical course. Longitudinal analysis of both muscle densities over three months revealed that patients with decreased muscle density over time were more likely to have severe cases than those who did not. CONCLUSIONS: Muscle density, rather than muscle area, predicts the clinical outcomes of COVID-19. Integrated assessment of pectoralis and erector spinae muscle densities demonstrated higher accuracy in predicting the clinical course of COVID-19 than individual assessments.
Subject(s)
COVID-19 , Pectoralis Muscles , Male , Humans , Female , Prognosis , Retrospective Studies , COVID-19/diagnostic imaging , Tomography, X-Ray Computed , Disease Progression , BiomarkersABSTRACT
BACKGROUND: Computed tomography (CT) imaging is widely used for diagnosing and determining the severity of coronavirus disease 2019 (COVID-19). Chest CT imaging can be used to calculate the epicardial adipose tissue (EAT) and upper abdominal visceral adipose tissue (Abd-VAT) areas. The EAT is the main source of inflammatory cytokines involved in chest inflammatory diseases; thus, the EAT area might be a more useful severity predictor than the Abd-VAT area for COVID-19. However, to the best of our knowledge, there are no large-scale reports that sufficiently consider this issue. In addition, there are no reports on the characteristics of patients with normal body mass index (BMI) and high adipose tissue. AIM: The purpose of this study was to analyze whether the EAT area, among various adipose tissues, was the most associated factor with COVID-19 severity. Using a multicenter COVID-19 patient database, we analyzed the associations of chest subcutaneous, chest visceral, abdominal subcutaneous, and Abd-VAT areas with COVID-19 outcomes. In addition, the clinical significance of central obesity, commonly disregarded by BMI, was examined. METHODS: This retrospective cohort study evaluated patients with COVID-19 aged ≥18 years In Japan. Data including from chest CT images collected between February 2020 and October 2022 in four hospitals of the Japan COVID-19 Task Force were analyzed. Patient characteristics and COVID-19 severity were compared according to the adipose tissue areas (chest and abdominal subcutaneous adipose tissue [Chest-SAT and Abd-SAT], EAT, and Abd-VAT) calculated from chest CT images. RESULTS: We included 1077 patients in the analysis. Patients with risk factors of severe COVID-19 such as old age, male sex, and comorbidities had significantly higher areas of EAT and Abd-VAT. High EAT area but not high Abd-VAT area was significantly associated with COVID-19 severity (adjusted odds ratio (aOR): 2.66, 95 % confidence interval [CI]: 1.19-5.93). There was no strong correlation between BMI and VAT. Patients with high VAT area accounted for 40.7 % of the non-obesity population (BMI < 25 kg/m2). High EAT area was also significantly associated with COVID-19 severity in the non-obesity population (aOR: 2.50, 95 % CI: 1.17-5.34). CONCLUSIONS: Our study indicated that VAT is significantly associated with COVID-19 severity and that EAT is the best potential predictor for risk stratification in COVID-19 among adipose tissue areas. Body composition assessment using EAT is an appropriate marker for identifying obesity patients overlooked by BMI. Considering the next pandemic of the global health crisis, our findings open new avenues for implementing appropriate body composition assessments based on CT imaging.
Subject(s)
COVID-19 , Humans , Male , Adolescent , Adult , Retrospective Studies , Body Mass Index , COVID-19/diagnostic imaging , COVID-19/complications , Adipose Tissue/diagnostic imaging , Tomography, X-Ray Computed , Obesity/diagnostic imaging , Obesity/complications , Intra-Abdominal Fat/diagnostic imagingABSTRACT
OBJECTIVE: This study aimed to investigate the utility of CT quantification of lung volume for predicting critical outcomes in COVID-19 patients. METHODS: This retrospective cohort study included 1200 hospitalised patients with COVID-19 from 4 hospitals. Lung fields were extracted using artificial intelligence-based segmentation, and the percentage of the predicted (%pred) total lung volume (TLC (%pred)) was calculated. The incidence of critical outcomes and posthospitalisation complications was compared between patients with low and high CT lung volumes classified based on the median percentage of predicted TLCct (n=600 for each). Prognostic factors for residual lung volume loss were investigated in 208 patients with COVID-19 via a follow-up CT after 3 months. RESULTS: The incidence of critical outcomes was higher in the low TLCct (%pred) group than in the high TLCct (%pred) group (14.2% vs 3.3%, p<0.0001). Multivariable analysis of previously reported factors (age, sex, body mass index and comorbidities) demonstrated that CT-derived lung volume was significantly associated with critical outcomes. The low TLCct (%pred) group exhibited a higher incidence of bacterial infection, heart failure, thromboembolism, liver dysfunction and renal dysfunction than the high TLCct (%pred) group. TLCct (%pred) at 3 months was similarly divided into two groups at the median (71.8%). Among patients with follow-up CT scans, lung volumes showed a recovery trend from the time of admission to 3 months but remained lower in critical cases at 3 months. CONCLUSION: Lower CT lung volume was associated with critical outcomes, posthospitalisation complications and slower improvement of clinical conditions in COVID-19 patients.