Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters

Publication year range
1.
Bioinformatics ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137137

ABSTRACT

SUMMARY: Snipit is an analysis and visualisation tool designed for summarising single nucleotide polymorphisms (SNPs) in sequences in comparison to a reference sequence. This tool efficiently catalogues nucleotide and amino acid differences, enabling clear comparisons through customizable, publication-ready figures. With features such as configurable colour palettes, customizable record sorting, and the ability to output figures in multiple formats, snipit offers a user-friendly interface for researchers across diverse disciplines. Additionally, snipit includes a specialised recombi-mode for illustrating recombination patterns, which can highlight otherwise often difficult-to-detect relationships between sequences. AVAILABILITY AND IMPLEMENTATION: Snipit is an open-source python-based tool that is hosted on GitHub under a GNU-GPL 3.0 licence (https://github.com/aineniamh/snipit). It can be installed from PyPi using pip. Source code and additional documentation can be found on the GitHub repository.

2.
Emerg Infect Dis ; 30(8): 1631-1641, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043393

ABSTRACT

A globally implemented unified phylogenetic classification for human respiratory syncytial virus (HRSV) below the subgroup level remains elusive. We formulated global consensus of HRSV classification on the basis of the challenges and limitations of our previous proposals and the future of genomic surveillance. From a high-quality curated dataset of 1,480 HRSV-A and 1,385 HRSV-B genomes submitted to GenBank and GISAID (https://www.gisaid.org) public sequence databases through March 2023, we categorized HRSV-A/B sequences into lineages based on phylogenetic clades and amino acid markers. We defined 24 lineages within HRSV-A and 16 within HRSV-B and provided guidelines for defining prospective lineages. Our classification demonstrated robustness in its applicability to both complete and partial genomes. We envision that this unified HRSV classification proposal will strengthen HRSV molecular epidemiology on a global scale.


Subject(s)
Genome, Viral , Phylogeny , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/classification , Humans , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus Infections/epidemiology
3.
Clin Infect Dis ; 76(3): e1328-e1334, 2023 02 08.
Article in English | MEDLINE | ID: mdl-35959938

ABSTRACT

BACKGROUND: Influenza circulated at historically low levels during 2020/2021 due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic travel restrictions. In Australia, international arrivals were required to undergo a 14-day hotel quarantine to limit new introduction of SARS-CoV-2. METHODS: We usedtesting data for travelers arriving on repatriation flights to Darwin, Australia, from 3 January 2021 to 11 October 2021 to identify importations of influenza virus into Australia. We used this information to estimate the risk of a case exiting quarantine while still infectious. Influenza-positive samples were sequenced, and cases were followed up to identify transmission clusters. Data on the number of cases and total passengers were used to infer the risk of influenza cases exiting quarantine while infectious. RESULTS: Despite very low circulation of influenza globally, 42 cases were identified among 15 026 returned travelers, of which 30 were A(H3N2), 2 were A(H1N1)pdm09, and 10 were B/Victoria. Virus sequencing data identified potential in-flight transmission, as well as independent infections prior to travel. Under the quarantine strategy in place at the time, the probability that these cases could initiate influenza outbreaks in Australia neared 0. However, this probability rose as quarantine requirements relaxed. CONCLUSIONS: Detection of influenza virus infections in repatriated travelers provided a source of influenza viruses otherwise unavailable and enabled development of the A(H3N2) vaccine seed viruses included in the 2022 Southern Hemisphere influenza vaccine. Failure to test quarantined returned travelers for influenza represents a missed opportunity for enhanced surveillance to better inform public health preparedness.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Quarantine , Influenza A Virus, H3N2 Subtype , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Victoria
4.
Emerg Infect Dis ; 29(1): 170-174, 2023 01.
Article in English | MEDLINE | ID: mdl-36573541

ABSTRACT

In late 2021, highly pathogenic avian influenza A(H5N8) clade 2.3.4.4b viruses were detected in domestic ducks in poultry markets in Cambodia. Surveillance, biosafety, and biosecurity efforts should be bolstered along the poultry value chain to limit spread and infection risk at the animal-human interface.


Subject(s)
Influenza A Virus, H5N8 Subtype , Influenza in Birds , Influenza, Human , Poultry Diseases , Animals , Humans , Influenza in Birds/epidemiology , Cambodia/epidemiology , Birds , Ducks , Poultry , Phylogeny
5.
Glob Chang Biol ; 29(12): 3331-3346, 2023 06.
Article in English | MEDLINE | ID: mdl-36897640

ABSTRACT

Mangroves have been identified as blue carbon ecosystems that are natural carbon sinks. In Bangladesh, the establishment of mangrove plantations for coastal protection has occurred since the 1960s, but the plantations may also be a sustainable pathway to enhance carbon sequestration, which can help Bangladesh meet its greenhouse gas (GHG) emission reduction targets, contributing to climate change mitigation. As a part of its Nationally Determined Contribution (NDC) under the Paris Agreement 2016, Bangladesh is committed to limiting the GHG emissions through the expansion of mangrove plantations, but the level of carbon removal that could be achieved through the establishment of plantations has not yet been estimated. The mean ecosystem carbon stock of 5-42 years aged (average age: 25.5 years) mangrove plantations was 190.1 (±30.3) Mg C ha-1 , with ecosystem carbon stocks varying regionally. The biomass carbon stock was 60.3 (±5.6) Mg C ha-1 and the soil carbon stock was 129.8 (±24.8) Mg C ha-1 in the top 1 m of which 43.9 Mg C ha-1 was added to the soil after plantation establishment. Plantations at age 5 to 42 years achieved 52% of the mean ecosystem carbon stock calculated for the reference site (Sundarbans natural mangroves). Since 1966, the 28,000 ha of established plantations to the east of the Sundarbans have accumulated approximately 76,607 Mg C year-1 sequestration in biomass and 37,542 Mg C year-1 sequestration in soils, totaling 114,149 Mg C year-1 . Continuation of the current plantation success rate would sequester an additional 664,850 Mg C by 2030, which is 4.4% of Bangladesh's 2030 GHG reduction target from all sectors described in its NDC, however, plantations for climate change mitigation would be most effective 20 years after establishment. Higher levels of investment in mangrove plantations and higher plantation establishment success could contribute up to 2,098,093 Mg C to blue carbon sequestration and climate change mitigation in Bangladesh by 2030.


Subject(s)
Ecosystem , Wetlands , Climate Change , Bangladesh , Soil , Carbon/metabolism , Carbon Sequestration
6.
Euro Surveill ; 28(37)2023 09.
Article in English | MEDLINE | ID: mdl-37707981

ABSTRACT

BackgroundCOVID-19 pandemic mitigation measures, including travel restrictions, limited global circulation of influenza viruses. In Australia, travel bans for non-residents and quarantine requirements for returned travellers were eased in November 2021, providing pathways for influenza viruses to be re-introduced.AimWe aimed to describe the epidemiological and virological characteristics of the re-emergence of influenza in Victoria, Australia to inform public health interventions.MethodsFrom 1 November 2021 to 30 April 2022, we conducted an epidemiological study analysing case notification data from the Victorian Department of Health to describe case demographics, interviewed the first 200 cases to establish probable routes of virus reintroduction and examined phylogenetic and antigenic data to understand virus diversity and susceptibility to current vaccines.ResultsOverall, 1,598 notifications and 1,064 positive specimens were analysed. The majority of cases (61.4%) occurred in the 15-34 years age group. Interviews revealed a higher incidence of international travel exposure during the first month of case detections, and high levels of transmission in university residential colleges were associated with return to campus. Influenza A(H3N2) was the predominant subtype, with a single lineage predominating despite multiple importations.ConclusionEnhanced testing for respiratory viruses during the COVID-19 pandemic provided a more complete picture of influenza virus transmission compared with previous seasons. Returned international travellers were important drivers of influenza reemergence, as were young adults, a group whose role has previously been under-recognised in the establishment of seasonal influenza epidemics. Targeting interventions, including vaccination, to these groups could reduce future influenza transmission.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Young Adult , Humans , Victoria/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Influenza A Virus, H3N2 Subtype , Phylogeny , COVID-19/epidemiology
7.
Environ Monit Assess ; 195(5): 621, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37106260

ABSTRACT

The African continent has the most extensive grassland cover in the world, providing valuable ecosystem services. African grasslands, like other continental grasslands, are prone to various anthropogenic disturbances and climate, and require data-driven monitoring for efficient functioning and service delivery. Yet, knowledge of how the African grassland cover has changed in the past years is lacking, especially at the subcontinent level, due to lack of relevant long-term, Africa-wide observations and experiments. In this study, we used Moderate Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) data spanning 2001 to 2017 to conduct land use land cover (LULC) change analyses and map grassland distribution in Africa. Specifically, we assessed the changes in grassland cover across and within African subcontinents over three periods (2001-2013, 2013-2017, and 2001-2017). We found that the African grassland cover was 16,777,765.5 km2, 16,999,468.25 km2, and 16,968,304.25 km2 in 2001, 2013, and 2017, respectively. There were net gain (1.32%) and net loss (- 0.19%) during 2001-2013 and 2013-2017 periods, respectively, and the annual rate of change during these periods were 0.11% and - 0.05%, respectively. Generally, the African grassland cover increased by 1.14% (0.07% per annum) over the entire study period (2001-2017) at the expense of forestland, cropland, and built-up areas. The East and West African grassland cover reduced by 0.07% (- 0.02% per annum) and 1.35% (- 0.34% per annum), respectively from 2013 to 2017 but increased in other periods. On the other hand, the grassland cover in North and Central Africa increased throughout the three periods while that of Southern Africa decreased over the three periods. Overall, the net gains in the grassland cover of other African subcontinents offset the loss in Southern Africa and promoted the overall gain across Africa. This study underscores the need for continuous monitoring of African grasslands and the causes of their changes for efficient delivery of ecosystem services.


Subject(s)
Ecosystem , Grassland , Conservation of Natural Resources , Environmental Monitoring , Africa, Southern
8.
J Virol ; 95(24): e0126721, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34586866

ABSTRACT

Introduction of non-pharmaceutical interventions to control COVID-19 in early 2020 coincided with a global decrease in active influenza circulation. However, between July and November 2020, an influenza A(H3N2) epidemic occurred in Cambodia and in other neighboring countries in the Greater Mekong Subregion in Southeast Asia. We characterized the genetic and antigenic evolution of A(H3N2) in Cambodia and found that the 2020 epidemic comprised genetically and antigenically similar viruses of Clade3C2a1b/131K/94N, but they were distinct from the WHO recommended influenza A(H3N2) vaccine virus components for 2020-2021 Northern Hemisphere season. Phylogenetic analysis revealed multiple virus migration events between Cambodia and bordering countries, with Laos PDR and Vietnam also reporting similar A(H3N2) epidemics immediately following the Cambodia outbreak: however, there was limited circulation of these viruses elsewhere globally. In February 2021, a virus from the Cambodian outbreak was recommended by WHO as the prototype virus for inclusion in the 2021-2022 Northern Hemisphere influenza vaccine. IMPORTANCE The 2019 coronavirus disease (COVID-19) pandemic has significantly altered the circulation patterns of respiratory diseases worldwide and disrupted continued surveillance in many countries. Introduction of control measures in early 2020 against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection has resulted in a remarkable reduction in the circulation of many respiratory diseases. Influenza activity has remained at historically low levels globally since March 2020, even when increased influenza testing was performed in some countries. Maintenance of the influenza surveillance system in Cambodia in 2020 allowed for the detection and response to an influenza A(H3N2) outbreak in late 2020, resulting in the inclusion of this virus in the 2021-2022 Northern Hemisphere influenza vaccine.


Subject(s)
COVID-19/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Influenza Vaccines/immunology , Influenza, Human/complications , Influenza, Human/immunology , Cambodia/epidemiology , Disease Outbreaks , Humans , Influenza, Human/epidemiology , Influenza, Human/virology , Laos , Likelihood Functions , Phylogeny , SARS-CoV-2 , Vietnam
9.
Malar J ; 17(1): 463, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30526613

ABSTRACT

BACKGROUND: Spreading Plasmodium falciparum artemisinin drug resistance threatens global malaria public health gains. Limited data exist to define the extent of P. falciparum artemisinin resistance southeast of the Greater Mekong region in Malaysia. METHODS: A clinical efficacy study of oral artesunate (total target dose 12 mg/kg) daily for 3 days was conducted in patients with uncomplicated falciparum malaria and a parasite count < 100,000/µL admitted to 3 adjacent district hospitals in Sabah, East Malaysia. On day 3 and 4 all patients were administered split dose mefloquine (total dose 25 mg/kg) and followed for 28 days. Twenty-one kelch13 polymorphisms associated with P. falciparum artemisinin resistance were also evaluated in P. falciparum isolates collected from patients presenting to health facilities predominantly within the tertiary referral area of western Sabah between 2012 and 2016. RESULTS: In total, 49 patients were enrolled and treated with oral artesunate. 90% (44/49) of patients had cleared their parasitaemia by 48 h and 100% (49/49) within 72 h. The geometric mean parasite count at presentation was 9463/µL (95% CI 6757-13,254), with a median time to 50% parasite clearance of 4.3 h (IQR 2.0-8.4). There were 3/45 (7%) patients with a parasite clearance slope half-life of ≥ 5 h. All 278 P. falciparum isolates evaluated were wild-type for kelch13 markers. CONCLUSION: There is no suspected or confirmed evidence of endemic artemisinin-resistant P. falciparum in this pre-elimination setting in Sabah, Malaysia. Current guidelines recommending first-line treatment with ACT remain appropriate for uncomplicated malaria in Sabah, Malaysia. Ongoing surveillance is needed southeast of the Greater Mekong sub-region.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Adolescent , Adult , Antimalarials/therapeutic use , Artemisinins/therapeutic use , Child , Child, Preschool , Female , Genetic Markers/genetics , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaysia/epidemiology , Male , Middle Aged , Molecular Epidemiology , Parasite Load , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Treatment Outcome , Young Adult
10.
Malar J ; 16(1): 29, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28086789

ABSTRACT

BACKGROUND: Plasmodium knowlesi is the most common cause of malaria in Malaysia. However, microscopic diagnosis is inaccurate and rapid diagnostic tests (RDTs) are insufficiently sensitive. PCR is sensitive and specific but not feasible at a district level. Loop-mediated isothermal amplification (LAMP) shows potential with only basic requirements. A commercially available LAMP assay, the Eiken Loopamp™ MALARIA Pan Detection kit, is sensitive for Plasmodium falciparum and Plasmodium vivax, but has not previously been evaluated for P. knowlesi. This study aims to determine the sensitivity of this LAMP assay for detecting P. knowlesi infection. METHODS: Study participants included 73 uncomplicated malaria patients with PCR species confirmation: 50 P. knowlesi, 20 P. falciparum and 3 P. vivax. Nineteen malaria-negative, non-endemic area controls were also included. The sensitivity of the Eiken Loopamp™ MALARIA Pan Detection kit (Pan LAMP) for detecting each Plasmodium species was evaluated. Sensitivity and specificity of the Eiken Loopamp™ MALARIA Pf Detection kit (Pf LAMP) for P. falciparum were also determined. The limit of detection for each LAMP assay was evaluated, with results compared to PCR. All P. knowlesi patients were also tested by CareStart™ (Pf/VOM) and OptiMAL-IT™ (Pan/Pf) RDTs. RESULTS: The sensitivity of the Pan LAMP assay was 100% for P. knowlesi (95% CI 92.9-100), P. falciparum (95% CI 83.2-100), and P. vivax (95% CI 29.2-100). The Pf LAMP was 100% sensitive and specific for P. falciparum detection, with all P. knowlesi samples having a negative reaction. LAMP sensitivity was superior to both RDTs, with only 10 and 28% of P. knowlesi samples testing positive to CareStart™ and OptiMAL-IT™, respectively. Limit of detection using the Pan LAMP for both P. knowlesi and P. vivax was 2 parasites/µL, comparable to PCR. For P. falciparum both the Pan LAMP and Pf LAMP demonstrated a limit of detection of 20 parasites/µL. CONCLUSIONS: The Eiken Loopamp™ MALARIA Pan Detection kit is sensitive for detection of P. knowlesi in low parasitaemia clinical infections, as well as P. falciparum and P. vivax. However, a P. knowlesi-specific field assay in a simpler format would assist correct species identification and initiation of optimal treatment for all malaria patients.


Subject(s)
Malaria/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Plasmodium falciparum/isolation & purification , Plasmodium knowlesi/isolation & purification , Plasmodium vivax/isolation & purification , Adolescent , Adult , Aged , Child , Child, Preschool , Healthy Volunteers , Humans , Malaria/parasitology , Malaysia , Male , Middle Aged , Plasmodium falciparum/genetics , Plasmodium knowlesi/genetics , Plasmodium vivax/genetics , Prospective Studies , Sensitivity and Specificity , Young Adult
11.
Malar J ; 15(1): 357, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27405869

ABSTRACT

BACKGROUND: Transfusion-transmitted malaria (TTM) is a well-recognized risk of receiving blood transfusions, and has occurred with Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae. The simian parasite Plasmodium knowlesi is also known to be transmissible through inoculation of infected blood, and this species is now the most common cause of malaria in Malaysia with a high rate of severity and fatal cases reported. No confirmed case of accidental transfusion-transmitted P. knowlesi has yet been reported. CASE PRESENTATION: A 23-year old splenectomized patient with beta thalassaemia major presented with fever 11 days after receiving a blood transfusion from a pre-symptomatic donor who presented with knowlesi malaria 12 days following blood donation. The infection resulted in severe disease in the recipient, with a parasite count of 84,000/µL and associated metabolic acidosis and multi-organ failure. She was treated with intravenous artesunate and made a good recovery. Sequencing of a highly diverse 649-base pair fragment of the P. knowlesi bifunctional dihydrofolate reductase-thymidylate synthase gene (pkdhfr) revealed that the recipient and donor shared the same haplotype. CONCLUSIONS: This case demonstrates that acquisition of P. knowlesi from blood transfusion can occur, and that clinical consequences can be severe. Furthermore, this case raises the possibility that thalassaemic patients, particularly those who are splenectomized, may represent a high-risk group for TTM and severe malaria. With rising P. knowlesi incidence, further studies in Sabah are required to determine the risk of TTM in order to guide screening strategies for blood transfusion services.


Subject(s)
Malaria/transmission , Plasmodium knowlesi/isolation & purification , Splenectomy , Transfusion Reaction , Administration, Intravenous , Artemisinins/administration & dosage , Artesunate , Female , Humans , Malaria/drug therapy , Malaysia , Plasmodium knowlesi/classification , Plasmodium knowlesi/enzymology , Plasmodium knowlesi/genetics , Tetrahydrofolate Dehydrogenase/genetics , Treatment Outcome , Young Adult
12.
J Clin Microbiol ; 52(6): 2053-60, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24696029

ABSTRACT

Plasmodium knowlesi causes severe and fatal malaria in Malaysia. Microscopic misdiagnosis is common and may delay appropriate treatment. P. knowlesi can cross-react with "species-specific" parasite lactate dehydrogenase (pLDH) monoclonal antibodies used in rapid diagnostic tests (RDTs) to detect P. falciparum and P. vivax. At one tertiary-care hospital and two district hospitals in Sabah, we prospectively evaluated two combination RDTs for malaria diagnosis by using both a pan-Plasmodium-pLDH (pan-pLDH)/P. falciparum-specific-pLDH (Pf-pLDH) RDT (OptiMAL-IT) and a non-P. falciparum VOM-pLDH/Pf-HRP2 RDT (CareStart). Differential cross-reactivity among these combinations was hypothesized to differentiate P. knowlesi from other Plasmodium monoinfections. Among 323 patients with PCR-confirmed P. knowlesi (n = 193), P. falciparum (n = 93), and P. vivax (n = 37) monoinfections, the VOM-pLDH individual component had the highest sensitivity for nonsevere (35%; 95% confidence interval [CI], 27 to 43%) and severe (92%; CI, 81 to 100%) P. knowlesi malaria. CareStart demonstrated a P. knowlesi sensitivity of 42% (CI, 34 to 49%) and specificity of 74% (CI, 65 to 82%), a P. vivax sensitivity of 83% (CI, 66 to 93%) and specificity of 71% (CI, 65 to 76%), and a P. falciparum sensitivity of 97% (CI, 90 to 99%) and specificity of 99% (CI, 97 to 100%). OptiMAL-IT demonstrated a P. knowlesi sensitivity of 32% (CI, 25 to 39%) and specificity of 21% (CI, 15 to 29%), a P. vivax sensitivity of 60% (CI, 42 to 75%) and specificity of 97% (CI, 94 to 99%), and a P. falciparum sensitivity of 82% (CI, 72 to 89%) and specificity of 39% (CI, 33 to 46%). The combination of CareStart plus OptiMAL-IT for P. knowlesi using predefined criteria gave a sensitivity of 25% (CI, 19 to 32%) and specificity of 97% (CI, 92 to 99%). Combining two RDT combinations was highly specific for P. knowlesi malaria diagnosis; however, sensitivity was poor. The specificity of pLDH RDTs was decreased for P. vivax and P. falciparum because of P. knowlesi cross-reactivity and cautions against their use alone in areas where P. knowlesi malaria is endemic. Sensitive P. knowlesi-specific RDTs and/or alternative molecular diagnostic tools are needed in areas where P. knowlesi malaria is endemic.


Subject(s)
Antigens, Protozoan/analysis , L-Lactate Dehydrogenase/analysis , Malaria/diagnosis , Plasmodium/isolation & purification , Point-of-Care Systems , Protozoan Proteins/analysis , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Monoclonal , Child , Child, Preschool , Cross Reactions , Female , Humans , Immunoassay/methods , Malaysia , Male , Middle Aged , Plasmodium/chemistry , Prospective Studies , Sensitivity and Specificity , Young Adult
13.
Mol Cell Proteomics ; 11(11): 1340-53, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22899770

ABSTRACT

Parasitic liver flukes of the family Fasciolidae are responsible for major socioeconomic losses worldwide. However, at present, knowledge of the fundamental molecular biology of these organisms is scant. Here, we characterize, for the first time, the transcriptome and secreted proteome of the adult stage of the "giant liver fluke," Fascioloides magna, using Illumina sequencing technology and one-dimensional SDS-PAGE and OFFGEL protein electrophoresis, respectively. A total of ∼54,000,000 reads were generated and assembled into ∼39,000 contiguous sequences (contigs); ∼20,000 peptides were predicted and classified based on homology searches, protein motifs, gene ontology, and biological pathway mapping. From the predicted proteome, 48.1% of proteins could be assigned to 384 biological pathway terms, including "spliceosome," "RNA transport," and "endocytosis." Putative proteins involved in amino acid degradation were most abundant. Of the 835 secreted proteins predicted from the transcriptome of F. magna, 80 were identified in the excretory/secretory products from this parasite. Highly represented were antioxidant proteins, followed by peptidases (particularly cathepsins) and proteins involved in carbohydrate metabolism. The integration of transcriptomic and proteomic datasets generated herein sets the scene for future studies aimed at exploring the potential role(s) that molecules might play at the host-parasite interface and for establishing novel strategies for the treatment or control of parasitic fluke infections.


Subject(s)
Fasciolidae/genetics , Fasciolidae/metabolism , Gene Expression Profiling , Helminth Proteins/metabolism , Proteome/metabolism , Proteomics , Transcriptome/genetics , Amino Acid Sequence , Animals , Cathepsin L/chemistry , Cathepsin L/genetics , Cathepsin L/metabolism , Deer , Helminth Proteins/chemistry , Helminth Proteins/genetics , Humans , Isoenzymes/chemistry , Isoenzymes/metabolism , Molecular Sequence Annotation , Molecular Sequence Data , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment
14.
Infect Immun ; 81(6): 2104-11, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23545299

ABSTRACT

Evidence from human studies and mouse models shows that infection with parasitic helminths has a suppressive effect on the pathogenesis of some inflammatory diseases. Recently, we and others have shown that some of the suppressive effects of hookworms reside in their excretory/secretory (ES) products. Here, we demonstrate that ES products of the hookworm Ancylostoma caninum (AcES) suppress intestinal pathology in a model of chemically induced colitis. This suppression was associated with potent induction of a type 2 cytokine response characterized by coexpression of interleukin-4 (IL-4) and IL-10 by CD4(+) T cells, downregulation of proinflammatory cytokine expression in the draining lymph nodes and the colon, and recruitment of alternatively activated (M2) macrophages and eosinophils to the site of ES administration. Protease digestion and heat denaturation of AcES resulted in impaired induction of CD4(+) IL-4(+) IL-10(+) cell responses and diminished ability to suppress colitis, indicating that protein component(s) are responsible for some of the immunosuppressive effects of AcES. Identification of the specific parasite-derived molecules responsible for reducing pathology during chemically induced colitis could lead to the development of novel therapeutics for the treatment of human inflammatory bowel disease.


Subject(s)
Ancylostoma/metabolism , CD4-Positive T-Lymphocytes/metabolism , Colitis/pathology , Helminth Proteins/pharmacology , Interleukin-10/metabolism , Interleukin-4/metabolism , Ancylostoma/immunology , Animals , CD4-Positive T-Lymphocytes/classification , Colitis/chemically induced , Colitis/drug therapy , Colon/immunology , Colon/pathology , Cytokines/metabolism , Dextran Sulfate/toxicity , Eosinophils/cytology , Female , Helminth Proteins/therapeutic use , Lymph Nodes/immunology , Lymph Nodes/pathology , Macrophages/cytology , Mice , Mice, Inbred C57BL , Peritoneal Cavity/cytology
15.
Environ Sci Pollut Res Int ; 30(27): 69882-69898, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37195601

ABSTRACT

Livelihood diversification is an essential strategy for managing economic and environmental shocks and reducing rural poverty in developing countries. This article presents a comprehensive two-part literature review on livelihood capital and livelihood diversification strategies. Firstly, it identifies the role of livelihood capital in determining livelihood diversification strategies, and secondly, it assesses the role of livelihood diversification strategies in reducing rural poverty in developing countries. Evidence suggests that human, natural, and financial capitals are the primary determining assets of livelihood diversification strategies. However, the role of social and physical capital with livelihood diversification has not widely been studied. Education, farming experience, family size, land holding size, access to formal credit, access to market, and membership in village organizations were the major influencing factors in the adoption process of livelihood diversification strategies. The contribution of livelihood diversification in poverty reduction (SDG-1) was realized through improved food security and nutrition, increased income level, sustainability of crop production, and mitigating climatic vulnerabilities. This study suggests enhanced livelihood diversification through improved access to and availability of livelihood assets is vital in reducing rural poverty in developing countries.


Subject(s)
Agriculture , Developing Countries , Humans , Farms , Poverty , Family Characteristics , Rural Population
16.
Sci Rep ; 13(1): 1413, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36697460

ABSTRACT

Heavy industry can face challenges in choosing applicable climate change mitigation measures due to a lack of technical background and practical guidance. A better understanding of these determinants is needed to design region-specific climate policies that most effectively enable more 'successful' low carbon transitions. Set in an emerging economy, this study aims to understand the determinants which underlie investment decision-making in greenhouse gas reduction. It relies on empirical research using an exploratory case study method in the leading cement company in Indonesia. The results show four key determinants influencing (constraining) adoption were (1) the primacy of profit-seeking objectives in operational planning and development; (2) the availability of sources (clinker substitutes and alternative energy fuels); (3) the limited access to cash capital; and (4) the complexity in implementing emissions reduction projects. The inquiry also compares determinants in an emerging and developed country to provide a comparative perspective on emissions management in manufacturing. It appears that firms from the industrial sector in emerging economies have investment strategies that are largely characterised by activities that accentuate achieving financial benefits or best value for money or cost savings in a short time frame, or 'short-termism'. Currently, greenhouse gas emissions management activities tend to be second-preference strategies for firms in emerging economies, at least in the industrial manufacturing sector.

17.
J Clin Virol ; 161: 105423, 2023 04.
Article in English | MEDLINE | ID: mdl-36934591

ABSTRACT

BACKGROUND: Human Respiratory Syncytial Virus (RSV) infections pose a significant risk to human health worldwide, especially for young children. Whole genome sequencing (WGS) provides a useful tool for global surveillance to better understand the evolution and epidemiology of RSV and provide essential information that may impact on antibody treatments, antiviral drug sensitivity and vaccine effectiveness. OBJECTIVES: Here we report the development of a rapid and simplified amplicon-based one-step multiplex reverse-transcription polymerase chain reaction (mRT-PCR) for WGS of both human RSV-A and RSV-B viruses. STUDY DESIGN: Two mRT-PCR reactions for each sample were designed to generate amplicons for RSV WGS. This new method was tested and evaluated by sequencing 206 RSV positive clinical samples collected in Australia in 2020 and 2021 with RSV Ct values between 10 and 32. RESULTS: In silico analysis and laboratory testing revealed that the primers used in the new method covered most of the currently circulating RSV-A and RSV-B. Amplicons generated were suitable for both Illumina and Oxford Nanopore Technologies (ONT) NGS platforms. A success rate of 83.5% with a full coverage for the genome of 98 RSV-A and 74 RSV-B was achieved from all clinical samples tested. CONCLUSIONS: This assay is simple to set up, robust, easily scalable in sample preparation and relatively inexpensive, and as such, provides a valuable addition to existing NGS RSV WGS methods.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Child , Humans , Child, Preschool , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Multiplex Polymerase Chain Reaction , Antiviral Agents , Sensitivity and Specificity
18.
Influenza Other Respir Viruses ; 17(1): e13073, 2023 01.
Article in English | MEDLINE | ID: mdl-36824313

ABSTRACT

Background: External quality assessments (EQAs) for the molecular detection of human respiratory syncytial virus (RSV) are necessary to ensure the standardisation of reliable results. The Phase II, 2019-2020 World Health Organization (WHO) RSV EQA included 28 laboratories in 26 countries. The EQA panel evaluated performance in the molecular detection and subtyping of RSV-A and RSV-B. This manuscript describes the preparation, distribution, and analysis of the 2019-2020 WHO RSV EQA. Methods: Panel isolates underwent whole genome sequencing and in silico primer matching. The final panel included nine contemporary, one historical virus and two negative controls. The EQA panel was manufactured and distributed by the UK National External Quality Assessment Service (UK NEQAS). National laboratories used WHO reference assays developed by the United States Centers for Disease Control and Prevention, an RSV subtyping assay developed by the Victorian Infectious Diseases Reference Laboratory (Australia), or other in-house or commercial assays already in use at their laboratories. Results: An in silico analysis of isolates showed a good match to assay primer/probes. The panel was distributed to 28 laboratories. Isolates were correctly identified in 98% of samples for detection and 99.6% for subtyping. Conclusions: The WHO RSV EQA 2019-2020 showed that laboratories performed at high standards. Updating the composition of RSV molecular EQAs with contemporary strains to ensure representation of circulating strains, and ensuring primer matching with EQA panel viruses, is advantageous in assessing diagnostic competencies of laboratories. Ongoing EQAs are recommended because of continued evolution of mismatches between current circulating strains and existing primer sets.


Subject(s)
Respiratory Syncytial Virus, Human , Viruses , United States , Humans , Respiratory Syncytial Virus, Human/genetics , Laboratories , World Health Organization , Australia
19.
Antiviral Res ; 200: 105280, 2022 04.
Article in English | MEDLINE | ID: mdl-35304163

ABSTRACT

A total of 3425 influenza B viruses collected from the Asia-Pacific region were tested against the four registered neuraminidase inhibitors (NAIs) (oseltamivir carboxylate, zanamivir, peramivir and laninamivir) as part of the routine surveillance work at the WHO Collaborating Centre for Research and Reference on Influenza, Melbourne between 2016 and 2020. Forty-five influenza B viruses with reduced susceptibility to one or more NAIs were identified. While the majority of these had neuraminidase (NA) mutations that were known to confer NAIs resistance, fifteen had NA mutations that had not been confirmed as being responsible for reduced NAIs susceptibility. Eleven of these NA mutations of concern were investigated using reverse genetics (RG) techniques to verify that these mutations were the cause of the reduced NAI susceptibility. All mutations were introduced separately into the NA of B/Brisbane/27/2016 (a B Victoria-lineage virus) or B/Yamanashi/166/98 (a B Yamagata-lineage virus) and the effects of these were analysed by an in vitro NAI assay. The T146K substitution in the NA of B Victoria and Yamagata-lineages resulted in a large increase in the IC50 for peramivir (>1000-fold increase in the mean IC50 of sensitive viruses with T146) with smaller increases for zanamivir and oseltamivir. A proline substitution (T146P) had a slightly lower (>700-fold) effect on the peramivir IC50 and also on the other NAIs. The presence of a second NA mutation at N169S combined with the T146P further increased the IC50 of peramivir (>7000-fold) and the other NAIs. A synergistic effect was also confirmed for dual NA mutations with G247D + I361V which showed a modest increase in the IC50 for oseltamivir (6-fold). Only one of two RG-viruses with the mutation G108E could be rescued and it had a high IC50 against zanamivir (>4000-fold) and laninamivir (>7000-fold), but a lower IC50 against oseltamivir (>200-fold). NA mutations H101L, A200T, D432G, H439P and H439R were also confirmed to somewhat reduce the in vitro susceptibility of influenza B viruses to the NAIs. Overall, this study identifies the potential impact of selected mutations on the clinical performance of NAIs when used to treat influenza B infection in humans.


Subject(s)
Influenza B virus , Influenza, Human , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Resistance, Viral/genetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Influenza B virus/genetics , Influenza, Human/drug therapy , Neuraminidase/genetics , Neuraminidase/therapeutic use , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Zanamivir/pharmacology , Zanamivir/therapeutic use
20.
Article in English | MEDLINE | ID: mdl-36154657

ABSTRACT

As part of its role in the World Health Organization's (WHO) Global Influenza Surveillance and Response System (GISRS), the WHO Collaborating Centre for Reference and Research on Influenza in Melbourne received a total of 2,393 human influenza positive samples between 1 January 2020 and 31 December 2021 (2020: n = 2,021 samples; 2021: n = 372 samples). Viruses were analysed for their antigenic, genetic and antiviral susceptibility properties. Selected viruses were propagated in qualified cells or embryonated hen's eggs for potential use in seasonal influenza virus vaccines. During 2020-2021, influenza A viruses (A(H1N1)pdm09 in 2020 and A(H3N2) in 2021) predominated over influenza B viruses. In 2020, the majority of A(H1N1)pdm09, A(H3N2) and influenza B viruses analysed at the Centre were found to be antigenically similar to the respective WHO recommended vaccine strains for the southern hemisphere in 2020. In 2021, the majority of A(H1N1)pdm09 and A(H3N2) viruses were found to be antigenically distinct relative to the WHO recommended vaccine strains for the southern hemisphere in 2021. Of the influenza B viruses analysed at the Centre, 46.7% were found to be antigenically distinct to the respective WHO recommended vaccine strains. Of 1,538 samples tested for susceptibility to the neuraminidase inhibitors oseltamivir and zanamivir (in 2020, n = 1,374; in 2021, n = 164), two A(H1N1)pdm09 viruses showed highly reduced inhibition against oseltamivir, and one A(H1N1)pdm09 virus showed highly reduced inhibition against zanamivir. All of these samples were received in 2020.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human , Antiviral Agents/pharmacology , Australia/epidemiology , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza B virus/genetics , Influenza Vaccines , Influenza, Human/epidemiology , Influenza, Human/virology , Neuraminidase , Oseltamivir/pharmacology , World Health Organization , Zanamivir/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL