ABSTRACT
It is generally assumed that French fries are likely to have weak in vitro mutagenic activity, but most studies thereof have only assessed gene mutations. In this article, the genotoxicity of 10 extracts of French fries was assessed using the in vitro micronucleus test (following the principles of the OECD 487 guidelines). Each sample was obtained from a different mass catering company in Navarra (Spain). This assay, together with the Ames test, is recommended in the basic in vitro phase included in the European Food Safety Authority Opinion on Genotoxicity Testing Strategies Applicable to Food and Feed Safety Assessment. Eight of 10 samples from mass catering companies induced chromosomal aberrations in the in vitro micronucleus test. Moreover, French fries deep-fried in the laboratory for different periods of time (0, 3, 5, 10, 20, 30 min) were assessed using the in vitro micronucleus test. Genotoxicity was observed in all time periods from 3 min on. The biological relevance of these results must be further explored.
Subject(s)
Chromosome Aberrations , DNA Damage , Humans , Mutagenicity Tests , Mutation , Micronucleus TestsABSTRACT
Measurement of DNA migration in the comet assay can be done by image analysis or visual scoring. The latter accounts for 20%-25% of the published comet assay results. Here we assess the intra- and inter-investigator variability in visual scoring of comets. We include three training sets of comet images, which can be used as reference for researchers who wish to use visual scoring of comets. Investigators in 11 different laboratories scored the comet images using a five-class scoring system. There is inter-investigator variation in the three training sets of comets (i.e. coefficient of variation (CV) = 9.7%, 19.8%, and 15.2% in training sets I-III, respectively). However, there is also a positive correlation of inter-investigator scoring in the three training sets (r = 0.60). Overall, 36% of the variation is attributed to inter-investigator variation and 64% stems from intra-investigator variation in scoring between comets (i.e. the comets in training sets I-III look slightly different and this gives rise to heterogeneity in scoring). Intra-investigator variation in scoring was also assessed by repeated analysis of the training sets by the same investigator. There was larger variation when the training sets were scored over a period of six months (CV = 5.9%-9.6%) as compared to 1 week (CV = 1.3%-6.1%). A subsequent study revealed a high inter-investigator variation when premade slides, prepared in a central laboratory, were stained and scored by investigators in different laboratories (CV = 105% and 18%-20% in premade slides with comets from unexposed and hydrogen peroxide-exposed cells, respectively). The results indicate that further standardization of visual scoring is desirable. Nevertheless, the analysis demonstrates that visual scoring is a reliable way of analysing DNA migration in comets.
ABSTRACT
The comet assay is a simple and versatile method for measurement of DNA damage in eukaryotic cells. More specifically, the assay detects DNA migration from agarose gel-embedded nucleoids, which depends on assay conditions and the level of DNA damage. Certain steps in the comet assay procedure have substantial impact on the magnitude of DNA migration (e.g. electric potential and time of electrophoresis). Inter-laboratory variation in DNA migration levels occurs because there is no agreement on optimal assay conditions or suitable assay controls. The purpose of the hCOMET ring trial was to test potassium bromate (KBrO3) as a positive control for the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay. To this end, participating laboratories used semi-standardized protocols for cell culture (i.e. cell culture, KBrO3 exposure, and cryopreservation of cells) and comet assay procedures, whereas the data acquisition was not standardized (i.e. staining of comets and image analysis). Segregation of the total variation into partial standard deviation (SD) in % Tail DNA units indicates the importance of cell culture procedures (SD = 10.9), comet assay procedures (SD = 12.3), staining (SD = 7.9) and image analysis (SD = 0.5) on the overall inter-laboratory variation of DNA migration (SD = 18.2). Future studies should assess sources of variation in each of these steps. On the positive side, the hCOMET ring trial demonstrates that KBrO3 is a robust positive control for the Fpg-modified comet assay. In conclusion, the hCOMET ring trial has demonstrated a high reproducibility of detecting genotoxic effects by the comet assay, but inter-laboratory variation of DNA migration levels is a concern.
ABSTRACT
The comet assay is widely used in biomonitoring studies for the analysis of DNA damage in leukocytes and peripheral blood mononuclear cells. Rather than processing blood samples directly, it can be desirable to cryopreserve whole blood or isolated cells for later analysis by the comet assay. However, this creates concern about artificial accumulation of DNA damage during cryopreservation. In this study, 10 laboratories used standardized cryopreservation and thawing procedures of monocytic (THP-1) or lymphocytic (TK6) cells. Samples were cryopreserved in small aliquots in 50% foetal bovine serum, 40% cell culture medium, and 10% dimethyl sulphoxide. Subsequently, cryopreserved samples were analysed by the standard comet assay on three occasions over a 3-year period. Levels of DNA strand breaks in THP-1 cells were increased (four laboratories), unaltered (four laboratories), or decreased (two laboratories) by long-term storage. Pooled analysis indicates only a modest positive association between storage time and levels of DNA strand breaks in THP-1 cells (0.37% Tail DNA per year, 95% confidence interval: -0.05, 0.78). In contrast, DNA strand break levels were not increased by cryopreservation in TK6 cells. There was inter-laboratory variation in levels of DNA strand breaks in THP-1 cells (SD = 3.7% Tail DNA) and TK6 reference sample cells (SD = 9.4% Tail DNA), whereas the intra-laboratory residual variation was substantially smaller (i.e. SD = 0.4%-2.2% Tail DNA in laboratories with the smallest and largest variation). In conclusion, the study shows that accumulation of DNA strand breaks in cryopreserved mononuclear blood cell lines is not a matter of concern.
Subject(s)
DNA Damage , Leukocytes, Mononuclear , Comet Assay/methods , Leukocytes, Mononuclear/metabolism , Cryopreservation/methods , DNA/metabolismABSTRACT
The formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay is widely used for the measurement of oxidatively generated damage to DNA. However, there has not been a recommended long-term positive control for this version of the comet assay. We have investigated potassium bromate as a positive control for the Fpg-modified comet assay because it generates many Fpg-sensitive sites with a little concurrent generation of DNA strand breaks. Eight laboratories used the same procedure for the treatment of monocytic THP-1 cells with potassium bromate (0, 0.5, 1.5, and 4.5 mM) and subsequent cryopreservation in a freezing medium consisting of 50% foetal bovine serum, 40% RPMI-1640 medium, and 10% dimethyl sulphoxide. The samples were analysed by the Fpg-modified comet assay three times over a 3-year period. All laboratories obtained a positive concentration-response relationship in cryopreserved samples (linear regression coefficients ranging from 0.79 to 0.99). However, there was a wide difference in the levels of Fpg-sensitive sites between the laboratory with the lowest (4.2% Tail DNA) and highest (74% Tail DNA) values in THP-1 cells after exposure to 4.5 mM KBrO3. In an attempt to assess sources of inter-laboratory variation in Fpg-sensitive sites, comet images from one experiment in each laboratory were forwarded to a central laboratory for visual scoring. There was high consistency between measurements of %Tail DNA values in each laboratory and the visual score of the same comets done in the central laboratory (r = 0.98, P < 0.001, linear regression). In conclusion, the results show that potassium bromate is a suitable positive comet assay control.
ABSTRACT
DNA damage and repair activity are often assessed in blood samples from humans in different types of molecular epidemiology studies. However, it is not always feasible to analyse the samples on the day of collection without any type of storage. For instance, certain studies use repeated sampling of cells from the same subject or samples from different subjects collected at different time-points, and it is desirable to analyse all these samples in the same comet assay experiment. In addition, flawless comet assay analyses on frozen samples open up the possibility of using this technique on biobank material. In this article we discuss the use of cryopreserved peripheral blood mononuclear cells (PBMCs), buffy coat (BC) and whole blood (WB) for analysis of DNA damage and repair using the comet assay. The published literature and the authors' experiences indicate that various types of blood samples can be cryopreserved with only a minor effect on the basal level of DNA damage. There is evidence to suggest that WB and PBMCs can be cryopreserved for several years without much effect on the level of DNA damage. However, care should be taken when cryopreserving WB and BCs. It is possible to use either fresh or frozen samples of blood cells, but results from fresh and frozen cells should not be used in the same dataset. The article outlines detailed protocols for the cryopreservation of PBMCs, BCs and WB samples.
Subject(s)
Blood Preservation , Comet Assay , DNA Damage , DNA Repair , Leukocytes, Mononuclear , Blood Specimen Collection , Cryopreservation , HumansABSTRACT
PURPOSE: To determine whether (poly)phenols from gastrointestinal-digested green pepper possess genoprotective properties in human colon cells and whether the application of a culinary treatment (griddling) on the vegetable influences the potential genoprotective activity. METHODS: (Poly)phenols of raw and griddled green pepper (Capsicum annuum L.) submitted to in vitro-simulated gastrointestinal digestion were characterized by LC-MS/MS. Cytotoxicity (MTT, trypan blue and cell proliferation assays), DNA damage and DNA protection (standard alkaline and formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay) of different concentrations of (poly)phenolic extracts were assessed in colon HT-29 cells. RESULTS: A total of 32 (poly)phenolic compounds were identified and quantified in digested raw and griddled green pepper. Twenty of them were flavonoids and 12 were phenolic acids. Griddled pepper doubled the (poly)phenol concentration compared to raw; luteolin 7-O-(2-apiosyl)-glucoside and quercitrin constituted the major (poly)phenols in both extracts. Raw and griddled pepper (poly)phenolic extracts impaired cell proliferation and induced low levels of Fpg-sensitive sites, in a dose-dependent manner, even at a non-cytotoxic concentration. None of the concentrations tested induced DNA strand breaks or alkaline labile sites. Nor did they show significant genoprotection against the DNA damage induced by H2O2 or KBrO3. CONCLUSIONS: Green pepper (poly)phenols did not show genoprotection against oxidatively generated damage in HT-29 cells at simulated physiological concentrations, regardless of the application, or not, of a culinary treatment (griddling). Furthermore, high concentrations of (poly)phenolic extracts induced a slight pro-oxidant effect, even at a non-cytotoxic concentration.
Subject(s)
Adenocarcinoma , Capsicum , Colorectal Neoplasms , DNA Damage , Antioxidants , Chromatography, Liquid , DNA , HT29 Cells , Humans , Hydrogen Peroxide , Phenols/analysis , Plant Extracts/pharmacology , Tandem Mass SpectrometryABSTRACT
Peripheral blood leucocytes (PBL) have been traditionally used to investigate DNA damage by the comet assay in population studies, but validating alternative non-invasive samples would expand the application of this assay in human biomonitoring. The objectives of this study were (i) to test the validity of salivary leucocytes as a proper biomatrix for the comet assay, (ii) to evaluate the ability of this approach to detect different types of primary and oxidative DNA damage, and (iii) to determine whether frozen salivary leucocytes are still suitable for displaying those types of DNA damage. Fresh and frozen leucocytes isolated from saliva samples (six healthy non-smoking volunteers), were exposed to four genotoxic agents inducing different types of DNA damage, both primary (methyl methanesulfonate, actinomycin-D, ultraviolet radiation) and oxidative (potassium bromate), and standard or enzyme-modified comet assay was conducted. Results were compared with those obtained from PBL. Cells exposed to the four genotoxic agents showed dose-dependent increases of primary and oxidative DNA damage, demonstrating the suitability of all these samples to detect genetic damage from different origin. When comparing baseline levels of DNA damage, just a slight significant increase in primary DNA damage was observed in frozen salivary leucocytes regarding the other biomatrices, but similar results were obtained regarding sensitivity to DNA damage induction by all agents tested. This study demonstrates that salivary leucocytes can be employed in comet assay as an alternative or complement to blood samples. Frozen salivary leucocytes were proved to be a very convenient sample in large biomonitoring studies.
Subject(s)
Biological Monitoring/methods , Comet Assay/methods , Leukocytes/cytology , Saliva/cytology , Adult , DNA Damage/drug effects , DNA Damage/radiation effects , Female , Freezing , Humans , Leukocytes/drug effects , Leukocytes/radiation effects , Male , Middle AgedABSTRACT
Mechanistic toxicology is gaining weight for human health risk assessment. Different mechanistic assays are available, such as the comet assay, which detects DNA damage at the level of individual cells. However, the conventional alkaline version only detects strand breaks and alkali-labile sites. We have validated two modifications of the in vitro assay to generate mechanistic information: (1) use of DNA-repair enzymes (i.e., formamidopyrimidine DNA glycosylase, endonuclease III, human 8-oxoguanine DNA glycosylase I and human alkyladenine DNA glycosylase) for detection of oxidized and alkylated bases as well as (2) a modification for detecting cross-links. Seven genotoxicants with different mechanisms of action (potassium bromate, methyl methanesulfonate, ethyl methanesulfonate, hydrogen peroxide, cisplatin, mitomycin C, and benzo[a]pyrene diol epoxide), as well as a non-genotoxic compound (dimethyl sulfoxide) and a cytotoxic compound (Triton X-100) were tested on TK-6 cells. We were able to detect with high sensitivity and clearly differentiate oxidizing, alkylating and cross-linking agents. These modifications of the comet assay significantly increase its sensitivity and its specificity towards DNA lesions, providing mechanistic information regarding the type of damage.
Subject(s)
Comet Assay/methods , DNA Damage/drug effects , DNA Repair Enzymes/metabolism , Mutagens/toxicity , Alkylation , Cell Line , Humans , Oxidation-Reduction , Sensitivity and SpecificityABSTRACT
The comet assay is a popular assay in biomonitoring studies. DNA strand breaks (or unspecific DNA lesions) are measured using the standard comet assay. Oxidative stress-generated DNA lesions can be measured by employing DNA repair enzymes to recognise oxidatively damaged DNA. Unfortunately, there has been a tendency to fail to report results from assay controls (or maybe even not to employ assay controls). We believe this might have been due to uncertainty as to what really constitutes a positive control. It should go without saying that a biomonitoring study cannot have a positive control group as it is unethical to expose healthy humans to DNA damaging (and thus potentially carcinogenic) agents. However, it is possible to include assay controls in the analysis (here meant as a cryopreserved sample of cells i.e. included in each experiment as a reference sample). In the present report we tested potassium bromate (KBrO3) as a positive comet assay control for the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay. Ten laboratories used the same procedure for treatment of monocytic THP-1 cells with KBrO3 (0.5, 1.5 and 4.5 mM for 1 h at 37°C) and subsequent cryopreservation. Results from one laboratory were excluded in the statistical analysis because of technical issues in the Fpg-modified comet assay. All other laboratories found a concentration-response relationship in cryopreserved samples (regression coefficients from 0.80 to 0.98), although with different slopes ranging from 1.25 to 11.9 Fpg-sensitive sites (%DNA in tail) per 1 mM KBrO3. Our results demonstrate that KBrO3 is a suitable positive comet assay control.
Subject(s)
Bromates/toxicity , Comet Assay/standards , DNA Damage , Monocytes/drug effects , Biological Monitoring , DNA/drug effects , DNA/metabolism , DNA-Formamidopyrimidine Glycosylase , Humans , Monocytes/metabolism , Oxidative Stress , THP-1 CellsABSTRACT
The current chemotherapy against Chagas disease is inadequate and insufficient. A series of ten Mannich base-type derivatives have been synthesized to evaluate their in vitro antichagasic activity. After a preliminary screening, compounds 7 and 9 were subjected to in vivo assays in a murine model. Both compounds caused a substantial decrease in parasitemia in the chronic phase, which was an even better result than that of the reference drug benznidazole. In addition, compound 9 also showed better antichagasic activity during the acute phase. Moreover, metabolite excretion, effect on mitochondrial membrane potential and the inhibition of superoxide dismutase (SOD) studies were also performed to identify their possible mechanism of action. Finally, docking studies proposed a binding mode of the Fe-SOD enzyme similar to our previous series, which validated our design strategy. Therefore, the results suggest that these compounds should be considered for further preclinical evaluation as antichagasic agents.
Subject(s)
Chagas Disease/drug therapy , Mannich Bases/pharmacology , Superoxide Dismutase/antagonists & inhibitors , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Cells, Cultured , Chagas Disease/metabolism , Chlorocebus aethiops , Cyclophosphamide/administration & dosage , Cyclophosphamide/pharmacology , Dose-Response Relationship, Drug , Humans , Injections, Intraperitoneal , Mannich Bases/chemical synthesis , Mannich Bases/chemistry , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Molecular Structure , Parasitic Sensitivity Tests , Structure-Activity Relationship , Superoxide Dismutase/metabolism , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanosoma cruzi/metabolism , Vero CellsABSTRACT
The human eye is relatively unexplored as a source of cells for investigating DNA damage. There have been some clinical studies, using cells from surgically removed tissues, and altered DNA bases as well as strand breaks have been measured using the comet assay. Tissues examined include corneal epithelium and endothelium, lens capsule, iris and retinal pigment epithelium. For the purpose of biomonitoring for exposure to potential mutagens in the environment, the eye-relatively unprotected as it is compared with the skin-would be a valuable object for study; non-invasive techniques exist to collect lachrymal duct cells from tears, or cells from the ocular surface by impression cytology, and these methods should be further developed and validated.
Subject(s)
Comet Assay/methods , DNA Damage , Eye/cytology , Animals , Endothelial Cells/metabolism , Environmental Exposure/adverse effects , Environmental Monitoring/methods , Epithelium, Corneal/cytology , Epithelium, Corneal/metabolism , Humans , Lens Capsule, Crystalline/cytology , Lens Capsule, Crystalline/metabolismABSTRACT
The alkaline comet assay, in vivo and in vitro, is currently used in several areas of research and in regulatory genotoxicity testing. Several efforts have been made in order to decrease the inter-experimental and inter-laboratory variability and increase the reliability of the assay. In this regard, lysis conditions are considered as one of the critical variables and need to be further studied. Here, we tested different times of lysis (from no lysis to 1 week) and two different lysis solutions in human lymphoblast (TK6) cells unexposed or exposed to X-rays. Similar % tail DNA values were obtained independently of the time of lysis employed for every X-ray dose tested and both lysis solutions. These results, taken together with our previous ones with methyl methanesulfonate and H2O2, which showed clear lysis-time dependence, support that the influence of the lysis time in the comet assay results depends on the type of lesion being detected; some DNA lesions may spontaneously give rise to apurinic or apyrimidinic (AP) sites during the lysis period, which can be converted into strand breaks detectable with the comet assay. Testing different times of lysis would be useful to increase the sensitivity of the comet assay and to ensure the detection of DNA lesions of an unknown compound, thereby providing some insight into the chemical nature of the lesions induced. However, the same lysis conditions (i.e. lysis time and lysis solution) should be used when comparing results between different experiments or laboratories.
Subject(s)
Comet Assay/methods , Comet Assay/standards , Cell Line, Tumor , DNA Damage/drug effects , DNA Damage/radiation effects , Dose-Response Relationship, Radiation , Humans , Hydrogen Peroxide/pharmacology , Hydrogen-Ion Concentration , Reference Standards , Reproducibility of Results , Solutions , Time Factors , X-Rays/adverse effectsABSTRACT
The International Comet Assay Workshops are a series of scientific conferences dealing with practical and theoretical aspects of the Comet Assay (single-cell gel electrophoresis)-a simple method for detecting DNA strand breaks. The first paper describing such an assay was published over 30 years ago in 1984 by Swedish researchers O. Ostling and K. J. Johanson. Appropriately, the theme for the 2015 meeting was looking to the future: 'The Next 3 Decades of the Comet Assay'. The programme included 25 oral and 43 poster presentations depicting the latest advances in technical developments as well as applications of the comet assay in genotoxicity testing (in vitro and in vivo) and biomonitoring of both humans and the environment. Open discussion sessions based on questions from the participants allowed exchange of practical details on current comet assay protocols. This report summarises technical issues of high importance which were discussed during the sessions. We provide information on ways to improve the assay performance, by testing for cytotoxicity, by using reference samples to reduce or allow for inter-experimental variation, and by standardising quantification of the damage, including replicates and scoring enough comets to ensure statistical validity. After 30 years of experimentation with the comet assay, we are in a position to control the important experimental parameters and make the comet assay a truly reliable method with a wealth of possible applications.
Subject(s)
Comet Assay/methods , DNA Damage , Animals , DNA Repair , Environmental Monitoring , Humans , Plants/geneticsABSTRACT
We report the synthesis and in vitro activity against Trypanosoma cruzi epimastigotes of 15 novel quinoxaline derivatives. Ten of the derivatives presented IC50 values lower than the reference drugs Nfx and Bzn; four of them standed out with IC50 values lower than 1.5 µM. Moreover, unspecific cytotoxicity and genotoxicity studies are also reported. Compound 14 showed a SI higher than 24, whereas compound 10 was the only one that was negative in the genotoxicity screening.
Subject(s)
Quinoxalines/chemistry , Trypanocidal Agents/chemical synthesis , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Nitrogen/chemistry , Oxides/chemistry , Quinoxalines/chemical synthesis , Quinoxalines/pharmacology , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Vero CellsABSTRACT
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Subject(s)
Carcinogenesis/chemically induced , Carcinogens, Environmental/adverse effects , Environmental Exposure/adverse effects , Genomic Instability/drug effects , Hazardous Substances/adverse effects , Neoplasms/chemically induced , Neoplasms/etiology , Animals , HumansABSTRACT
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.
Subject(s)
Carcinogenesis/chemically induced , Carcinogens, Environmental/adverse effects , Environmental Exposure/adverse effects , Hazardous Substances/adverse effects , Neoplasms/chemically induced , Neoplasms/etiology , Animals , HumansABSTRACT
The alkaline comet assay is now the method of choice for measuring different kinds of DNA damage in cells. Several attempts have been made to identify and evaluate the critical points affecting the comet assay outcome, highlighting the requirement of arriving at a standardised protocol in order to be able to compare the results obtained in different laboratories. However, reports on the effect of modifying the time of lysis are lacking. Here we tested different times of lysis (from no lysis to 1 week) in control HeLa cells and HeLa cells treated with different concentrations of methyl methanesulfonate (MMS) or H2O2. We also tested different times of lysis in the comet assay combined with formamidopyrimidine DNA glycosylase (FPG) in untreated and Ro 19-8022 plus light-treated HeLa cells. The same DNA damage levels were detected in the absence of lysis or after 1h of lysis when the standard comet assay was used to detect the MMS- and H2O2-induced lesions; the response increased when longer lysis was used, up to at least 1 week. When FPG was used, a minimum lysis period of 5 min was necessary to allow the enzyme to reach the DNA; the same DNA damage levels were detected after 5 min or 1h of lysis and the response increased up to 24h. In conclusion, the time of lysis can be varied depending on the sensitivity needed in both versions of the assay, and a constant time of lysis should be used if results from different experiments or laboratories are to be compared.
Subject(s)
Comet Assay/methods , DNA Damage/genetics , Specimen Handling/methods , DNA-Formamidopyrimidine Glycosylase , HeLa Cells , Humans , Hydrogen Peroxide , Methyl Methanesulfonate , Sensitivity and Specificity , Time FactorsABSTRACT
The comet assay is widely used to test the genotoxicity of engineered nanomaterials (ENMs) but outcomes may vary when results from different laboratories, or even within one laboratory, are compared. We address some basic methodological considerations, such as the importance of carrying out physico-chemical characterisation of the ENMs in test-medium, performing uptake and cytotoxicity tests, and testing several genotoxicity-related endpoints. In this commentary, we discuss the different ways in which concentration of ENMs can be expressed, and stress the need to include appropriate controls and reference standards to monitor variation and avoid interference. Treatment conditions, including cell number, cell culture plate format and volume of treatment medium on the plate are crucial factors that may impact on results and thus should be kept constant within the study.
Subject(s)
Comet Assay/methods , DNA Damage/genetics , Nanostructures/toxicity , Reproducibility of ResultsABSTRACT
UNLABELLED: Nutrient excess and unbalanced diets can result in overproduction of reactive oxygen species (ROS), which are associated with oxidative stress. Cocoa extract contains antioxidants that inhibit the harmful effects of ROS. This trial analysed the effect of cocoa extract consumption integrated as a bioactive compound into ready-to-eat meals, on oxidative stress at the level of DNA in overweight/obese subjects. Fifty volunteers [57.26(5.24) years, 30.59(2.33)kg/m(2)] participated in a 4-week double-blind, randomised, placebo-controlled parallel nutritional intervention. Half of the volunteers received meals supplemented with 1.4 g/day cocoa extract, while the other half received control meals, both within a 15% energy restriction diet. Lymphocytes were isolated and endogenous strand breaks, oxidised bases and resistance to H2O2-induced damage were measured by the comet assay. The intake of ready-to-eat meals supplemented with cocoa extract did not show relevant changes in the oxidative status of DNA. However, in the cocoa group, oxidised bases negatively correlated with methyl epicatechin-O-sulphate (r = -0.76; P = -0.007) and epicatechin sulphate (r = -0.61; P = -0.046). When volunteers of both groups were analysed together, a marginal decrease (P = 0.072) in oxidised bases was observed, which attributed to weight loss. Subjects who started the intervention with higher levels of damage showed a greater reduction in oxidised bases after 4 weeks (P = 0.040) compared to those who had lower baseline levels. In conclusion, even if 1.4 g of cocoa supplementation for 4 weeks did not show notable changes in terms of antioxidant status of DNA, the energy restriction showed a slightly decrease in oxidised bases and this was seen to a greater extent in subjects who started the intervention with higher levels of damage. On the other hand, the inverse associations found between oxidised bases and some cocoa-derived metabolites suggest that a protective effect might be seen in a longer period of time or in subjects with higher baseline DNA damage. TRIAL REGISTRATION: www.clinicaltrials.gov (NCT01596309).