Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Cell ; 83(14): 2478-2492.e8, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37369201

ABSTRACT

The RNA-binding protein TRIM71/LIN-41 is a phylogenetically conserved developmental regulator that functions in mammalian stem cell reprogramming, brain development, and cancer. TRIM71 recognizes target mRNAs through hairpin motifs and silences them through molecular mechanisms that await identification. Here, we uncover that TRIM71 represses its targets through RNA-supported interaction with TNRC6/GW182, a core component of the miRNA-induced silencing complex (miRISC). We demonstrate that AGO2, TRIM71, and UPF1 each recruit TNRC6 to specific sets of transcripts to silence them. As cellular TNRC6 levels are limiting, competition occurs among the silencing pathways, such that the loss of AGO proteins or of AGO binding to TNRC6 enhances the activities of the other pathways. We conclude that a miRNA-like silencing activity is shared among different mRNA silencing pathways and that the use of TNRC6 as a central hub provides a means to integrate their activities.


Subject(s)
Argonaute Proteins , MicroRNAs , Animals , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Protein Binding , Stem Cells/metabolism , Mammals/metabolism
2.
EMBO J ; 42(4): e111895, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36688410

ABSTRACT

C. elegans develops through four larval stages that are rhythmically terminated by molts, that is, the synthesis and shedding of a cuticular exoskeleton. Each larval cycle involves rhythmic accumulation of thousands of transcripts, which we show here relies on rhythmic transcription. To uncover the responsible gene regulatory networks (GRNs), we screened for transcription factors that promote progression through the larval stages and identified GRH-1, BLMP-1, NHR-23, NHR-25, MYRF-1, and BED-3. We further characterize GRH-1, a Grainyhead/LSF transcription factor, whose orthologues in other animals are key epithelial cell-fate regulators. We find that GRH-1 depletion extends molt durations, impairs cuticle integrity and shedding, and causes larval death. GRH-1 is required for, and accumulates prior to, each molt, and preferentially binds to the promoters of genes expressed during this time window. Binding to the promoters of additional genes identified in our screen furthermore suggests that we have identified components of a core molting-clock GRN. Since the mammalian orthologues of GRH-1, BLMP-1 and NHR-23, have been implicated in rhythmic homeostatic skin regeneration in mouse, the mechanisms underlying rhythmic C. elegans molting may apply beyond nematodes.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Mice , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Molting/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Mammals/genetics
3.
Mol Cell ; 67(6): 1059-1067.e4, 2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28867294

ABSTRACT

YTHDF2 binds and destabilizes N6-methyladenosine (m6A)-modified mRNA. The extent to which this branch of m6A RNA-regulatory pathway functions in vivo and contributes to mammalian development remains unknown. Here we find that YTHDF2 deficiency is partially permissive in mice and results in female-specific infertility. Using conditional mutagenesis, we demonstrate that YTHDF2 is autonomously required within the germline to produce MII oocytes that are competent to sustain early zygotic development. Oocyte maturation is associated with a wave of maternal RNA degradation, and the resulting relative changes to the MII transcriptome are integral to oocyte quality. The loss of YTHDF2 results in the failure to regulate transcript dosage of a cohort of genes during oocyte maturation, with enrichment observed for the YTHDF2-binding consensus and evidence of m6A in these upregulated genes. In summary, the m6A-reader YTHDF2 is an intrinsic determinant of mammalian oocyte competence and early zygotic development.


Subject(s)
Gene Expression Regulation, Developmental , Meiosis , Oocytes/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Transcription, Genetic , Transcriptome , Zygote/metabolism , Animals , Binding Sites , Female , Fertility , Genotype , Infertility, Female/genetics , Infertility, Female/metabolism , Infertility, Female/pathology , Mice, Inbred C57BL , Mice, Knockout , Oocytes/pathology , Phenotype , Protein Binding , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Zygote/pathology
4.
Nature ; 548(7667): 347-351, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28792939

ABSTRACT

A fundamental principle in biology is that the program for early development is established during oogenesis in the form of the maternal transcriptome. How the maternal transcriptome acquires the appropriate content and dosage of transcripts is not fully understood. Here we show that 3' terminal uridylation of mRNA mediated by TUT4 and TUT7 sculpts the mouse maternal transcriptome by eliminating transcripts during oocyte growth. Uridylation mediated by TUT4 and TUT7 is essential for both oocyte maturation and fertility. In comparison to somatic cells, the oocyte transcriptome has a shorter poly(A) tail and a higher relative proportion of terminal oligo-uridylation. Deletion of TUT4 and TUT7 leads to the accumulation of a cohort of transcripts with a high frequency of very short poly(A) tails, and a loss of 3' oligo-uridylation. By contrast, deficiency of TUT4 and TUT7 does not alter gene expression in a variety of somatic cells. In summary, we show that poly(A) tail length and 3' terminal uridylation have essential and specific functions in shaping a functional maternal transcriptome.


Subject(s)
Maternal Inheritance/genetics , Oocytes/metabolism , Poly A/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Uridine Monophosphate/metabolism , Animals , Cell Line , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Female , Infertility, Female/genetics , Male , Mice , Mice, Knockout , Mothers , Nucleotidyltransferases/deficiency , Nucleotidyltransferases/genetics , Oocytes/growth & development , Organ Specificity , Poly A/chemistry , RNA Stability
5.
PLoS Genet ; 10(10): e1004597, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25329700

ABSTRACT

Male fertility requires the continuous production of high quality motile spermatozoa in abundance. Alterations in all three metrics cause oligoasthenoteratozoospermia, the leading cause of human sub/infertility. Post-mitotic spermatogenesis inclusive of several meiotic stages and spermiogenesis (terminal spermatozoa differentiation) are transcriptionally inert, indicating the potential importance for the post-transcriptional microRNA (miRNA) gene-silencing pathway therein. We found the expression of miRNA generating enzyme Dicer within spermatogenesis peaks in meiosis with critical functions in spermatogenesis. In an expression screen we identified two miRNA loci of the miR-34 family (miR-34b/c and miR-449) that are specifically and highly expressed in post-mitotic male germ cells. A reduction in several miRNAs inclusive of miR-34b/c in spermatozoa has been causally associated with reduced fertility in humans. We found that deletion of both miR34b/c and miR-449 loci resulted in oligoasthenoteratozoospermia in mice. MiR-34bc/449-deficiency impairs both meiosis and the final stages of spermatozoa maturation. Analysis of miR-34bc-/-;449-/- pachytene spermatocytes revealed a small cohort of genes deregulated that were highly enriched for miR-34 family target genes. Our results identify the miR-34 family as the first functionally important miRNAs for spermatogenesis whose deregulation is causal to oligoasthenoteratozoospermia and infertility.


Subject(s)
Asthenozoospermia/genetics , MicroRNAs/genetics , Oligospermia/genetics , Animals , DEAD-box RNA Helicases/genetics , Gene Expression Regulation , Infertility, Male/genetics , Male , Mice, Transgenic , Mitosis , Ribonuclease III/genetics , Spermatogenesis/genetics , Spermatozoa/physiology
6.
Curr Opin Genet Dev ; 86: 102197, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648722

ABSTRACT

Temporal control is central to deploy and coordinate genetic programs during development. At present, there is limited understanding of the molecular mechanisms that govern the duration and speed of developmental processes. Timing mechanisms may run in parallel and/or interact with each other to integrate temporal signals throughout the organism. In this piece, we consider findings on the extrinsic control of developmental tempo and discuss the intrinsic roles of cell cycle, metabolic rates, protein turnover, and post-transcriptional mechanisms in the regulation of tempo during neural development.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Developmental , Neurogenesis , Animals , Humans , Cell Cycle , Neurons/metabolism , Neurons/cytology
7.
Cell Stem Cell ; 30(6): 867-884.e11, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37209681

ABSTRACT

Gastruloids are 3D structures generated from pluripotent stem cells recapitulating fundamental principles of embryonic pattern formation. Using single-cell genomic analysis, we provide a resource mapping cell states and types during gastruloid development and compare them with the in vivo embryo. We developed a high-throughput handling and imaging pipeline to spatially monitor symmetry breaking during gastruloid development and report an early spatial variability in pluripotency determining a binary response to Wnt activation. Although cells in the gastruloid-core revert to pluripotency, peripheral cells become primitive streak-like. These two populations subsequently break radial symmetry and initiate axial elongation. By performing a compound screen, perturbing thousands of gastruloids, we derive a phenotypic landscape and infer networks of genetic interactions. Finally, using a dual Wnt modulation, we improve the formation of anterior structures in the existing gastruloid model. This work provides a resource to understand how gastruloids develop and generate complex patterns in vitro.


Subject(s)
Embryo, Mammalian , Pluripotent Stem Cells , Mice , Animals , Embryo, Mammalian/metabolism , Primitive Streak/metabolism , Embryonic Development
8.
Elife ; 92020 03 30.
Article in English | MEDLINE | ID: mdl-32223899

ABSTRACT

Robust organismal development relies on temporal coordination of disparate physiological processes. In Caenorhabditis elegans, the heterochronic pathway controls a timely juvenile-to-adult (J/A) transition. This regulatory cascade of conserved proteins and small RNAs culminates in accumulation of the transcription factor LIN-29, which triggers coordinated execution of transition events. We report that two LIN-29 isoforms fulfill distinct functions. Functional specialization is a consequence of distinct isoform expression patterns, not protein sequence, and we propose that distinct LIN-29 dose sensitivities of the individual J/A transition events help to ensure their temporal ordering. We demonstrate that unique isoform expression patterns are generated by the activities of LIN-41 for lin-29a, and of HBL-1 for lin-29b, whereas the RNA-binding protein LIN-28 coordinates LIN-29 isoform activity, in part by regulating both hbl-1 and lin-41. Our findings reveal that coordinated transition from juvenile to adult involves branching of a linear pathway to achieve timely control of multiple events.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , Transcription Factors/genetics , Animals , Caenorhabditis elegans Proteins/metabolism , Cell Differentiation , DNA-Binding Proteins/metabolism , Life Cycle Stages , Phenotype , Protein Isoforms , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL