ABSTRACT
BACKGROUND: While vaccination is the most effective way to prevent influenza infection and adverse outcomes, and despite WHO recommendations to vaccinate pregnant persons, access to seasonal influenza vaccines remains low. We explored knowledge, attitudes, and practices of pregnant persons about seasonal influenza vaccines to inform actions to improve vaccine uptake among this priority population. METHODS: We pooled individual-level data from cross-sectional surveys assessing pregnant persons' attitudes toward seasonal influenza vaccines in eight low- and middle-income countries during 2018-2019. The eight countries used a standard protocol and questionnaire to measure attitudes and intents toward influenza vaccination. We stratified by country-level (presence/absence of a national influenza vaccination program, country income group, geographic region) and individual-level factors. FINDINGS: Our analysis included 8,556 pregnant persons from eight low- and middle-income countries with and without seasonal influenza vaccination programs. Most pregnant persons (6,323, 74%) were willing to receive influenza vaccine if it was offered for free. Willingness differed by presence of an existing influenza vaccination program; acceptance was higher in countries without influenza vaccination programs (2,383, 89%) than in those with such programs (3,940, 67%, p < 0.001). INTERPRETATION: Most pregnant persons in middle-income countries, regardless of influenza vaccination program status, were willing to be vaccinated against influenza if the vaccine was provided free of charge. National investments in influenza vaccination programs may be well-received by pregnant persons, leading to averted illness both in pregnant persons themselves and in their newborn babies. FUNDING: US Centers for Disease Control and Prevention.
ABSTRACT
BACKGROUND: Historically, lack of data on cost-effectiveness of influenza vaccination has been identified as a barrier to vaccine use in low- and middle-income countries. We conducted a systematic review of economic evaluations describing (1) costs of influenza illness; (2) costs of influenza vaccination programs; and (3) vaccination cost-effectiveness from low- and middle-income countries to assess if gaps persist that could hinder global implementation of influenza vaccination programs. METHODS AND FINDINGS: We performed a systematic search in Medline, Embase, Cochrane Library, CINAHL, and Scopus in January 2022 and October 2023 using a combination of the following key words: "influenza" AND "cost" OR "economic." The search included studies with publication years 2012 through 2022. Studies were eligible if they (1) presented original, peer-reviewed findings on cost of illness, cost of vaccination program, or cost-effectiveness of vaccination for seasonal influenza; and (2) included data for at least 1 low- or middle-income country. We abstracted general study characteristics and data specific to each of the 3 study types. Of 54 included studies, 26 presented data on cost-effectiveness, 24 on cost-of-illness, and 5 on program costs. Represented countries were classified as upper-middle income (UMIC; n = 12), lower-middle income (LMIC; n = 7), and low-income (LIC; n = 3). The most evaluated target groups were children (n = 26 studies), older adults (n = 17), and persons with chronic medical conditions (n = 12); fewer studies evaluated pregnant persons (n = 9), healthcare workers (n = 5), and persons in congregate living settings (n = 1). Costs-of-illness were generally higher in UMICs than in LMICs/LICs; however, the highest national economic burden, as a percent of gross domestic product and national health expenditure, was reported from an LIC. Among studies that evaluated the cost-effectiveness of influenza vaccine introduction, most (88%) interpreted at least 1 scenario per target group as either cost-effective or cost-saving, based on thresholds designated in the study. Key limitations of this work included (1) heterogeneity across included studies; (2) restrictiveness of the inclusion criteria used; and (3) potential for missed influenza burden from use of sentinel surveillance systems. CONCLUSIONS: The 54 studies identified in this review suggest an increased momentum to generate economic evidence about influenza illness and vaccination from low- and middle-income countries during 2012 to 2022. However, given that we observed substantial heterogeneity, continued evaluation of the economic burden of influenza illness and costs/cost-effectiveness of influenza vaccination, particularly in LICs and among underrepresented target groups (e.g., healthcare workers and pregnant persons), is needed. Use of standardized methodology could facilitate pooling across settings and knowledge sharing to strengthen global influenza vaccination programs.
Subject(s)
Influenza Vaccines , Influenza, Human , Pregnancy , Female , Child , Humans , Aged , Influenza, Human/epidemiology , Influenza Vaccines/therapeutic use , Developing Countries , Cost-Benefit Analysis , VaccinationABSTRACT
BACKGROUND: There are limited data on the effectiveness of the vaccines against symptomatic coronavirus disease 2019 (Covid-19) currently authorized in the United States with respect to hospitalization, admission to an intensive care unit (ICU), or ambulatory care in an emergency department or urgent care clinic. METHODS: We conducted a study involving adults (≥50 years of age) with Covid-19-like illness who underwent molecular testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We assessed 41,552 admissions to 187 hospitals and 21,522 visits to 221 emergency departments or urgent care clinics during the period from January 1 through June 22, 2021, in multiple states. The patients' vaccination status was documented in electronic health records and immunization registries. We used a test-negative design to estimate vaccine effectiveness by comparing the odds of a positive test for SARS-CoV-2 infection among vaccinated patients with those among unvaccinated patients. Vaccine effectiveness was adjusted with weights based on propensity-for-vaccination scores and according to age, geographic region, calendar time (days from January 1, 2021, to the index date for each medical visit), and local virus circulation. RESULTS: The effectiveness of full messenger RNA (mRNA) vaccination (≥14 days after the second dose) was 89% (95% confidence interval [CI], 87 to 91) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization, 90% (95% CI, 86 to 93) against infection leading to an ICU admission, and 91% (95% CI, 89 to 93) against infection leading to an emergency department or urgent care clinic visit. The effectiveness of full vaccination with respect to a Covid-19-associated hospitalization or emergency department or urgent care clinic visit was similar with the BNT162b2 and mRNA-1273 vaccines and ranged from 81% to 95% among adults 85 years of age or older, persons with chronic medical conditions, and Black or Hispanic adults. The effectiveness of the Ad26.COV2.S vaccine was 68% (95% CI, 50 to 79) against laboratory-confirmed SARS-CoV-2 infection leading to hospitalization and 73% (95% CI, 59 to 82) against infection leading to an emergency department or urgent care clinic visit. CONCLUSIONS: Covid-19 vaccines in the United States were highly effective against SARS-CoV-2 infection requiring hospitalization, ICU admission, or an emergency department or urgent care clinic visit. This vaccine effectiveness extended to populations that are disproportionately affected by SARS-CoV-2 infection. (Funded by the Centers for Disease Control and Prevention.).
Subject(s)
Ambulatory Care/statistics & numerical data , COVID-19 Vaccines , COVID-19/prevention & control , Hospitalization/statistics & numerical data , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , Aged , Aged, 80 and over , BNT162 Vaccine , COVID-19/epidemiology , COVID-19 Vaccines/immunology , Female , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Patient Readmission/statistics & numerical data , United States/epidemiologyABSTRACT
To reduce influenza-associated morbidity and mortality, countries in South America recommend annual influenza vaccination for persons at high risk for severe influenza illness, including young children, persons with preexisting health conditions, and older adults. Interim estimates of influenza vaccine effectiveness (VE) from Southern Hemisphere countries can provide early information about the protective effects of vaccination and help guide Northern Hemisphere countries in advance of their season. Using data from a multicountry network, investigators estimated interim VE against influenza-associated severe acute respiratory illness (SARI) hospitalization using a test-negative case-control design. During March 13-July 19, 2024, Argentina, Brazil, Chile, Paraguay, and Uruguay identified 11,751 influenza-associated SARI cases; on average, 21.3% of patients were vaccinated against influenza, and the adjusted VE against hospitalization was 34.5%. The adjusted VE against the predominating subtype A(H3N2) was 36.5% and against A(H1N1)pdm09 was 37.1%. These interim VE estimates suggest that although the proportion of hospitalized patients who were vaccinated was modest, vaccination with the Southern Hemisphere influenza vaccine significantly lowered the risk for hospitalization. Northern Hemisphere countries should, therefore, anticipate the need for robust influenza vaccination campaigns and early antiviral treatment to achieve optimal protection against influenza-associated complications.
Subject(s)
Hospitalization , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Vaccine Efficacy , Humans , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza Vaccines/administration & dosage , Hospitalization/statistics & numerical data , Aged , Middle Aged , Adult , Adolescent , Young Adult , Child, Preschool , Child , Vaccine Efficacy/statistics & numerical data , Infant , South America/epidemiology , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/immunology , Female , Male , Case-Control StudiesABSTRACT
BACKGROUND: An increasing number of studies have described new and persistent symptoms and conditions as potential post-acute sequelae of SARS-CoV-2 infection (PASC). However, it remains unclear whether certain symptoms or conditions occur more frequently among persons with SARS-CoV-2 infection compared with those never infected with SARS-CoV-2. We compared the occurrence of specific COVID-associated symptoms and conditions as potential PASC 31- to 150-day following a SARS-CoV-2 test among adults and children with positive and negative test results. METHODS: We conducted a retrospective cohort study using electronic health record (EHR) data from 43 PCORnet sites participating in a national COVID-19 surveillance program. This study included 3,091,580 adults (316,249 SARS-CoV-2 positive; 2,775,331 negative) and 675,643 children (62,131 positive; 613,512 negative) who had a SARS-CoV-2 laboratory test during March 1, 2020-May 31, 2021 documented in their EHR. We used logistic regression to calculate the odds of having a symptom and Cox models to calculate the risk of having a newly diagnosed condition associated with a SARS-CoV-2 positive test. RESULTS: After adjustment for baseline covariates, hospitalized adults and children with a positive test had increased odds of being diagnosed with ≥ 1 symptom (adults: adjusted odds ratio[aOR], 1.17[95% CI, 1.11-1.23]; children: aOR, 1.18[95% CI, 1.08-1.28]) or shortness of breath (adults: aOR, 1.50[95% CI, 1.38-1.63]; children: aOR, 1.40[95% CI, 1.15-1.70]) 31-150 days following a SARS-CoV-2 test compared with hospitalized individuals with a negative test. Hospitalized adults with a positive test also had increased odds of being diagnosed with ≥ 3 symptoms or fatigue compared with those testing negative. The risks of being newly diagnosed with type 1 or type 2 diabetes (adjusted hazard ratio[aHR], 1.25[95% CI, 1.17-1.33]), hematologic disorders (aHR, 1.19[95% CI, 1.11-1.28]), or respiratory disease (aHR, 1.44[95% CI, 1.30-1.60]) were higher among hospitalized adults with a positive test compared with those with a negative test. Non-hospitalized adults with a positive test also had higher odds or increased risk of being diagnosed with certain symptoms or conditions. CONCLUSIONS: Patients with SARS-CoV-2 infection, especially those who were hospitalized, were at higher risk of being diagnosed with certain symptoms and conditions after acute infection.
Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Adult , Child , Humans , COVID-19/diagnosis , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Retrospective StudiesABSTRACT
BackgroundHealthcare personnel (HCP) are at high risk for respiratory infections through occupational exposure to respiratory viruses.AimWe used data from a prospective influenza vaccine effectiveness study in HCP to quantify the incidence of acute respiratory infections (ARI) and their associated presenteeism and absenteeism.MethodsAt the start and end of each season, HCP at two Israeli hospitals provided serum to screen for antibodies to influenza virus using the haemagglutination inhibition assay. During the season, active monitoring for the development of ARI symptoms was conducted twice a week by RT-PCR testing of nasal swabs for influenza and respiratory syncytial virus (RSV). Workplace presenteeism and absenteeism were documented. We calculated incidences of influenza- and RSV-associated ARI and applied sampling weights to make estimates representative of the source population.ResultsThe median age of 2,505 participating HCP was 41 years, and 70% were female. Incidence was 9.1 per 100 person-seasons (95%â¯CI:â¯5.8-14.2) for RT-PCR-confirmed influenza and 2.5 per 100 person-seasons (95%â¯CI:â¯0.9-7.1) for RSV illness. Each season, 18-23% of unvaccinated and influenza-negative HCP seroconverted. The incidence of seroconversion or RT-PCR-confirmed influenza was 27.5 per 100 person-seasons (95%â¯CI:â¯17.8-42.5). Work during illness occurred in 92% (95%â¯CI:â¯91-93) of ARI episodes, absence from work in 38% (95%â¯CI:â¯36-40).ConclusionInfluenza virus and RSV infections and associated presenteeism and absenteeism were common among HCP. Improving vaccination uptake among HCP, infection control, and encouraging sick HCP to stay home are important strategies to reduce ARI incidence and decrease the risk of in-hospital transmission.
Subject(s)
Absenteeism , Health Personnel , Influenza, Human , Presenteeism , Respiratory Syncytial Virus Infections , Seasons , Humans , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/virology , Influenza, Human/epidemiology , Influenza, Human/virology , Influenza, Human/diagnosis , Influenza, Human/prevention & control , Female , Incidence , Male , Health Personnel/statistics & numerical data , Israel/epidemiology , Adult , Presenteeism/statistics & numerical data , Middle Aged , Prospective Studies , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Respiratory Syncytial Viruses/isolation & purification , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus, Human/genetics , Occupational Exposure/statistics & numerical data , Hemagglutination Inhibition TestsABSTRACT
In their first season of vaccination, young children are recommended 2 doses of influenza vaccine, but a 2-dose schedule might be difficult to implement in many countries. Within a cohort study of 742 children aged 6 to <24 months in Managua, Nicaragua, this study estimated effectiveness of partial vaccination from 3 to 9 months postvaccination. Vaccine effectiveness was 74% (95% confidence interval [CI], 24%-91%) within 3 months and 55% (95% CI, 10%-77%) within 4 months. There was not significant protection beyond 5 months. Partial vaccination might confer some benefits but should be followed by a second dose.
Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Infant , Child, Preschool , Influenza, Human/prevention & control , Cohort Studies , Vaccination , SeasonsABSTRACT
BACKGROUND: Beginning in March 2021, Mexico vaccinated childcare workers with a single-dose CanSino Biologics (Adv5-nCoV) coronavirus disease 2019 (COVID-19) vaccine. Although CanSino is currently approved for use in 10 Latin American, Asian, and European countries, little information is available about its vaccine effectiveness (VE). METHODS: We evaluated CanSino VE within a childcare worker cohort that included 1408 childcare facilities. Participants were followed during March-December 2021 and tested through severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse-transcription polymerase chain reaction or rapid antigen test if they developed any symptom compatible with COVID-19. Vaccination status was obtained through worker registries. VE was calculated as 100% × (1 - hazard ratio for SARS-CoV-2 infection in fully vaccinated vs unvaccinated participants), using an Andersen-Gill model adjusted for age, sex, state, and local viral circulation. RESULTS: The cohort included 43 925 persons who were mostly (96%) female with a median age of 32 years; 37 646 (86%) were vaccinated with CanSino. During March-December 2021, 2250 (5%) participants had laboratory-confirmed COVID-19, of whom 25 were hospitalized and 6 died. Adjusted VE was 20% (95% confidence interval [CI], 10%-29%) against illness, 76% (95% CI, 42%-90%) against hospitalization, and 94% (95% CI, 66%-99%) against death. VE against illness declined from 48% (95% CI, 33%-61%) after 14-60 days following full vaccination to 20% (95% CI, 9%-31%) after 61-120 days. CONCLUSIONS: CanSino vaccine was effective at preventing COVID-19 illness and highly effective at preventing hospitalization and death. It will be useful to further evaluate duration of protection and assess the value of booster doses to prevent COVID-19 and severe outcomes.
Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , COVID-19/prevention & control , Child , Child Care , Female , Humans , Male , Mexico/epidemiology , SARS-CoV-2 , Vaccine EfficacyABSTRACT
In February 2021, Peru launched a COVID-19 vaccination campaign among healthcare personnel using an inactivated whole-virus vaccine. The manufacturer recommended 2 vaccine doses 21 days apart. We evaluated vaccine effectiveness among an existing multiyear influenza vaccine cohort at 2 hospitals in Lima. We analyzed data on 290 participants followed during February-May 2021. Participants completed a baseline questionnaire and provided weekly self-collected nasal swab samples; samples were tested by real-time reverse transcription PCR. Median participant follow-up was 2 (range 1-11) weeks. We performed multivariable logistic regression and adjusted for preselected characteristics. During the study, 25 (9%) participants tested SARS-CoV-2-positive. We estimated adjusted vaccine effectiveness at 95% (95% CI 70%-99%) among fully vaccinated participants and 100% (95% CI 88%-100%) among partially vaccinated participants. These data can inform the use and acceptance of inactivated whole-virus vaccine and support vaccination efforts in the region.
Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Health Personnel , Vaccination , Delivery of Health CareABSTRACT
We evaluated clinical and socioeconomic burdens of respiratory disease in banana farm workers in Guatemala. We offered all eligible workers enrollment during June 15-December 30, 2020, and annually, then tracked them for influenza-like illnesses (ILI) through self-reporting to study nurses, sentinel surveillance at health posts, and absenteeism. Workers who had ILI submitted nasopharyngeal swab specimens for testing for influenza virus, respiratory syncytial virus, and SARS-CoV-2, then completed surveys at days 0, 7, and 28. Through October 10, 2021, a total of 1,833 workers reported 169 ILIs (12.0 cases/100 person-years), and 43 (25.4%) were laboratory-confirmed infections with SARS-CoV-2 (3.1 cases/100 person-years). Workers who had SARS-CoV-2âpositive ILIs reported more frequent anosmia, dysgeusia, difficulty concentrating, and irritability and worse clinical and well-being severity scores than workers who had test resultânegative ILIs. Workers who had positive results also had greater absenteeism and lost income. These results support prioritization of farm workers in Guatemala for COVID-19 vaccination.
Subject(s)
COVID-19 , Influenza, Human , Virus Diseases , Humans , COVID-19/epidemiology , SARS-CoV-2 , Influenza, Human/epidemiology , COVID-19 Vaccines , COVID-19 Testing , Virus Diseases/epidemiologyABSTRACT
A network of global respiratory disease surveillance systems and partnerships has been built over decades as a direct response to the persistent threat of seasonal, zoonotic, and pandemic influenza. These efforts have been spearheaded by the World Health Organization, country ministries of health, the US Centers for Disease Control and Prevention, nongovernmental organizations, academic groups, and others. During the COVID-19 pandemic, the US Centers for Disease Control and Prevention worked closely with ministries of health in partner countries and the World Health Organization to leverage influenza surveillance systems and programs to respond to SARS-CoV-2 transmission. Countries used existing surveillance systems for severe acute respiratory infection and influenza-like illness, respiratory virus laboratory resources, pandemic influenza preparedness plans, and ongoing population-based influenza studies to track, study, and respond to SARS-CoV-2 infections. The incorporation of COVID-19 surveillance into existing influenza sentinel surveillance systems can support continued global surveillance for respiratory viruses with pandemic potential.
Subject(s)
COVID-19 , Influenza, Human , Humans , Pandemics/prevention & control , COVID-19/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , SARS-CoV-2 , World Health OrganizationABSTRACT
The Surveillance for Emerging Threats to Mothers and Babies Network conducts longitudinal surveillance of pregnant persons in the United States with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 infection during pregnancy. Of 6,551 infected pregnant persons in this analysis, 142 (2.2%) had positive RNA tests >90 days and up to 416 days after infection.
Subject(s)
COVID-19 , Pregnancy Complications, Infectious , COVID-19/diagnosis , Female , Humans , Laboratories , Pregnancy , Pregnancy Complications, Infectious/epidemiology , RNA, Viral , SARS-CoV-2/genetics , Serologic Tests , United StatesABSTRACT
Objective: To assess the stability of improvements in global respiratory virus surveillance in countries supported by the United States Centers for Disease Control and Prevention (CDC) after reductions in CDC funding and with the stress of the coronavirus disease 2019 (COVID-19) pandemic. Methods: We assessed whether national influenza surveillance systems of CDC-funded countries: (i) continued to analyse as many specimens between 2013 and 2021; (ii) participated in activities of the World Health Organization's (WHO) Global Influenza Surveillance and Response System; (iii) tested enough specimens to detect rare events or signals of unusual activity; and (iv) demonstrated stability before and during the COVID-19 pandemic. We used CDC budget records and data from the WHO Global Influenza Surveillance and Response System. Findings: While CDC reduced per-country influenza funding by about 75% over 10 years, the number of specimens tested annually remained stable (mean 2261). Reporting varied substantially by country and transmission zone. Countries funded by CDC accounted for 71% (range 61-75%) of specimens included in WHO consultations on the composition of influenza virus vaccines. In 2019, only eight of the 17 transmission zones sent enough specimens to WHO collaborating centres before the vaccine composition meeting to reliably identify antigenic variants. Conclusion: Great progress has been made in the global understanding of influenza trends and seasonality. To optimize surveillance to identify atypical influenza viruses, and to integrate molecular testing, sequencing and reporting of severe acute respiratory syndrome coronavirus 2 into existing systems, funding must continue to support these efforts.
Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , COVID-19/epidemiology , COVID-19/prevention & control , Centers for Disease Control and Prevention, U.S. , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics/prevention & control , Population Surveillance , United States/epidemiologyABSTRACT
Objectives. To describe prevalence of breast milk feeding among people with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy and examine associations between breast milk feeding, timing of maternal infection before delivery, and rooming-in status during delivery hospitalization. Methods. We performed a retrospective cohort study using data from Massachusetts, Minnesota, Nebraska, Pennsylvania, and Tennessee of whether people with confirmed SARS-CoV-2 infection during pregnancy in 2020 initiated breast milk feeding at birth. Results. Among 11 114 (weighted number) people with SARS-CoV-2 infection in pregnancy, 86.5% (95% confidence interval [CI] = 82.4%, 87.6%) initiated breast milk feeding during birth hospitalization. People with infection within 14 days before delivery had significantly lower prevalence of breast milk feeding (adjusted prevalence ratio [APR] = 0.88; 95% CI = 0.83, 0.94) than did those with infection at least 14 days before delivery. When stratified by rooming-in status, the association between timing of infection and breast milk feeding remained only among infants who did not room in with their mother (APR = 0.77; 95% CI = 0.68, 0.88). Conclusions. Pregnant and postpartum people with SARS-CoV-2 infection should have access to lactation support and be advised about the importance of breast milk feeding and how to safely feed their infants in the same room. (Am J Public Health. 2022;112(S8):S787-S796. https://doi.org/10.2105/AJPH.2022.307023).
Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Infant, Newborn , Female , Humans , COVID-19/epidemiology , Milk, Human , SARS-CoV-2 , Retrospective Studies , Breast Feeding , Pregnancy Complications, Infectious/epidemiologyABSTRACT
The COVID-19 pandemic has affected influenza virus transmission, with historically low activity, atypical timing, or altered duration of influenza seasons during 2020-22 (1,2). Community mitigation measures implemented since 2020, including physical distancing and face mask use, have, in part, been credited for low influenza detections globally during the pandemic, compared with those during prepandemic seasons (1). Reduced population exposure to natural influenza infections during 2020-21 and relaxed community mitigation measures after introduction of COVID-19 vaccines could increase the possibility of severe influenza epidemics. Partners in Chile and the United States assessed Southern Hemisphere influenza activity and estimated age-group-specific rates of influenza-attributable hospitalizations and vaccine effectiveness (VE) in Chile in 2022. Chile's most recent influenza season began in January 2022, which was earlier than during prepandemic seasons and was associated predominantly with influenza A(H3N2) virus, clade 3C.2a1b.2a.2. The cumulative incidence of influenza-attributable pneumonia and influenza (P&I) hospitalizations was 5.1 per 100,000 person-years during 2022, which was higher than that during 2020-21 but lower than incidence during the 2017-19 influenza seasons. Adjusted VE against influenza A(H3N2)-associated hospitalization was 49%. These findings indicate that influenza activity continues to be disrupted after emergence of SARS-CoV-2 in 2020. Northern Hemisphere countries might benefit from preparing for an atypical influenza season, which could include early influenza activity with potentially severe disease during the 2022-23 season, especially in the absence of prevention measures, including vaccination. Health authorities should encourage all eligible persons to seek influenza vaccination and take precautions to reduce transmission of influenza (e.g., avoiding close contact with persons who are ill).
Subject(s)
COVID-19 , Influenza A virus , Influenza Vaccines , Influenza, Human , United States , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Influenza A Virus, H3N2 Subtype/genetics , Incidence , Pandemics/prevention & control , COVID-19 Vaccines , Chile/epidemiology , Vaccine Efficacy , SARS-CoV-2 , Vaccination , Influenza B virusABSTRACT
The efficacy of the BNT162b2 (Pfizer-BioNTech) vaccine against laboratory-confirmed COVID-19 exceeded 90% in clinical trials that included children and adolescents aged 5-11, 12-15, and 16-17 years (1-3). Limited real-world data on 2-dose mRNA vaccine effectiveness (VE) in persons aged 12-17 years (referred to as adolescents in this report) have also indicated high levels of protection against SARS-CoV-2 (the virus that causes COVID-19) infection and COVID-19-associated hospitalization (4-6); however, data on VE against the SARS-CoV-2 B.1.1.529 (Omicron) variant and duration of protection are limited. Pfizer-BioNTech VE data are not available for children aged 5-11 years. In partnership with CDC, the VISION Network* examined 39,217 emergency department (ED) and urgent care (UC) encounters and 1,699 hospitalizations among persons aged 5-17 years with COVID-19-like illness across 10 states during April 9, 2021-January 29, 2022,§ to estimate VE using a case-control test-negative design. Among children aged 5-11 years, VE against laboratory-confirmed COVID-19-associated ED and UC encounters 14-67 days after dose 2 (the longest interval after dose 2 in this age group) was 46%. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 83% and 76%, respectively; VE ≥150 days after dose 2 was 38% and 46%, respectively. Among adolescents aged 16-17 years, VE increased to 86% ≥7 days after dose 3 (booster dose). VE against COVID-19-associated ED and UC encounters was substantially lower during the Omicron predominant period than the B.1.617.2 (Delta) predominant period among adolescents aged 12-17 years, with no significant protection ≥150 days after dose 2 during Omicron predominance. However, in adolescents aged 16-17 years, VE during the Omicron predominant period increased to 81% ≥7 days after a third booster dose. During the full study period, including pre-Delta, Delta, and Omicron predominant periods, VE against laboratory-confirmed COVID-19-associated hospitalization among children aged 5-11 years was 74% 14-67 days after dose 2, with wide CIs that included zero. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 92% and 94%, respectively; VE ≥150 days after dose 2 was 73% and 88%, respectively. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations, including a booster dose for those aged 12-17 years.
Subject(s)
BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccine Efficacy/statistics & numerical data , Adolescent , Ambulatory Care/statistics & numerical data , Child , Child, Preschool , Emergency Service, Hospital/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Male , United StatesABSTRACT
CDC recommends that all persons aged ≥18 years receive a single COVID-19 vaccine booster dose ≥2 months after receipt of an Ad.26.COV2.S (Janssen [Johnson & Johnson]) adenovirus vector-based primary series vaccine; a heterologous COVID-19 mRNA vaccine is preferred over a homologous (matching) Janssen vaccine for booster vaccination. This recommendation was made in light of the risks for rare but serious adverse events following receipt of a Janssen vaccine, including thrombosis with thrombocytopenia syndrome and Guillain-Barré syndrome (1), and clinical trial data indicating similar or higher neutralizing antibody response following heterologous boosting compared with homologous boosting (2). Data on real-world vaccine effectiveness (VE) of different booster strategies following a primary Janssen vaccine dose are limited, particularly during the period of Omicron variant predominance. The VISION Network§ determined real-world VE of 1 Janssen vaccine dose and 2 alternative booster dose strategies: 1) a homologous booster (i.e., 2 Janssen doses) and 2) a heterologous mRNA booster (i.e., 1 Janssen dose/1 mRNA dose). In addition, VE of these booster strategies was compared with VE of a homologous booster following mRNA primary series vaccination (i.e., 3 mRNA doses). The study examined 80,287 emergency department/urgent care (ED/UC) visits¶ and 25,244 hospitalizations across 10 states during December 16, 2021-March 7, 2022, when Omicron was the predominant circulating variant.** VE against laboratory-confirmed COVID-19-associated ED/UC encounters was 24% after 1 Janssen dose, 54% after 2 Janssen doses, 79% after 1 Janssen/1 mRNA dose, and 83% after 3 mRNA doses. VE for the same vaccination strategies against laboratory-confirmed COVID-19-associated hospitalizations were 31%, 67%, 78%, and 90%, respectively. All booster strategies provided higher protection than a single Janssen dose against ED/UC visits and hospitalizations during Omicron variant predominance. Vaccination with 1 Janssen/1 mRNA dose provided higher protection than did 2 Janssen doses against COVID-19-associated ED/UC visits and was comparable to protection provided by 3 mRNA doses during the first 120 days after a booster dose. However, 3 mRNA doses provided higher protection against COVID-19-associated hospitalizations than did other booster strategies during the same time interval since booster dose. All adults who have received mRNA vaccines for their COVID-19 primary series vaccination should receive an mRNA booster dose when eligible. Adults who received a primary Janssen vaccine dose should preferentially receive a heterologous mRNA vaccine booster dose ≥2 months later, or a homologous Janssen vaccine booster dose if mRNA vaccine is contraindicated or unavailable. Further investigation of the durability of protection afforded by different booster strategies is warranted.
Subject(s)
COVID-19 , Influenza Vaccines , Adolescent , Adult , Ambulatory Care , COVID-19/prevention & control , COVID-19 Vaccines , Emergency Service, Hospital , Hospitalization , Humans , Immunization, Secondary , SARS-CoV-2 , Vaccines, Synthetic , mRNA VaccinesABSTRACT
CDC recommends that all persons aged ≥12 years receive a booster dose of COVID-19 mRNA vaccine ≥5 months after completion of a primary mRNA vaccination series and that immunocompromised persons receive a third primary dose.* Waning of vaccine protection after 2 doses of mRNA vaccine has been observed during the period of the SARS-CoV-2 B.1.617.2 (Delta) variant predominance (1-5), but little is known about durability of protection after 3 doses during periods of Delta or SARS-CoV-2 B.1.1.529 (Omicron) variant predominance. A test-negative case-control study design using data from eight VISION Network sites§ examined vaccine effectiveness (VE) against COVID-19 emergency department/urgent care (ED/UC) visits and hospitalizations among U.S. adults aged ≥18 years at various time points after receipt of a second or third vaccine dose during two periods: Delta variant predominance and Omicron variant predominance (i.e., periods when each variant accounted for ≥50% of sequenced isolates).¶ Persons categorized as having received 3 doses included those who received a third dose in a primary series or a booster dose after a 2 dose primary series (including the reduced-dosage Moderna booster). The VISION Network analyzed 241,204 ED/UC encounters** and 93,408 hospitalizations across 10 states during August 26, 2021-January 22, 2022. VE after receipt of both 2 and 3 doses was lower during the Omicron-predominant than during the Delta-predominant period at all time points evaluated. During both periods, VE after receipt of a third dose was higher than that after a second dose; however, VE waned with increasing time since vaccination. During the Omicron period, VE against ED/UC visits was 87% during the first 2 months after a third dose and decreased to 66% among those vaccinated 4-5 months earlier; VE against hospitalizations was 91% during the first 2 months following a third dose and decreased to 78% ≥4 months after a third dose. For both Delta- and Omicron-predominant periods, VE was generally higher for protection against hospitalizations than against ED/UC visits. All eligible persons should remain up to date with recommended COVID-19 vaccinations to best protect against COVID-19-associated hospitalizations and ED/UC visits.
Subject(s)
Ambulatory Care/statistics & numerical data , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , SARS-CoV-2/immunology , Vaccine Efficacy , mRNA Vaccines/administration & dosage , Adult , Aged , Aged, 80 and over , Case-Control Studies , Emergency Service, Hospital , Female , Humans , Male , Middle Aged , Time Factors , United States , Young AdultABSTRACT
Estimates of COVID-19 mRNA vaccine effectiveness (VE) have declined in recent months (1,2) because of waning vaccine induced immunity over time,* possible increased immune evasion by SARS-CoV-2 variants (3), or a combination of these and other factors. CDC recommends that all persons aged ≥12 years receive a third dose (booster) of an mRNA vaccine ≥5 months after receipt of the second mRNA vaccine dose and that immunocompromised individuals receive a third primary dose. A third dose of BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine increases neutralizing antibody levels (4), and three recent studies from Israel have shown improved effectiveness of a third dose in preventing COVID-19 associated with infections with the SARS-CoV-2 B.1.617.2 (Delta) variant (5-7). Yet, data are limited on the real-world effectiveness of third doses of COVID-19 mRNA vaccine in the United States, especially since the SARS-CoV-2 B.1.1.529 (Omicron) variant became predominant in mid-December 2021. The VISION Network§ examined VE by analyzing 222,772 encounters from 383 emergency departments (EDs) and urgent care (UC) clinics and 87,904 hospitalizations from 259 hospitals among adults aged ≥18 years across 10 states from August 26, 2021¶ to January 5, 2022. Analyses were stratified by the period before and after the Omicron variant became the predominant strain (>50% of sequenced viruses) at each study site. During the period of Delta predominance across study sites in the United States (August-mid-December 2021), VE against laboratory-confirmed COVID-19-associated ED and UC encounters was 86% 14-179 days after dose 2, 76% ≥180 days after dose 2, and 94% ≥14 days after dose 3. Estimates of VE for the same intervals after vaccination during Omicron variant predominance were 52%, 38%, and 82%, respectively. During the period of Delta variant predominance, VE against laboratory-confirmed COVID-19-associated hospitalizations was 90% 14-179 days after dose 2, 81% ≥180 days after dose 2, and 94% ≥14 days after dose 3. During Omicron variant predominance, VE estimates for the same intervals after vaccination were 81%, 57%, and 90%, respectively. The highest estimates of VE against COVID-19-associated ED and UC encounters or hospitalizations during both Delta- and Omicron-predominant periods were among adults who received a third dose of mRNA vaccine. All unvaccinated persons should get vaccinated as soon as possible. All adults who have received mRNA vaccines during their primary COVID-19 vaccination series should receive a third dose when eligible, and eligible persons should stay up to date with COVID-19 vaccinations.
Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization, Secondary , SARS-CoV-2/immunology , Vaccine Efficacy/statistics & numerical data , mRNA Vaccines/administration & dosage , Adult , Aged , Aged, 80 and over , Ambulatory Care/statistics & numerical data , Emergency Service, Hospital/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , United States/epidemiologyABSTRACT
BACKGROUND: Multiple studies have described increased risk of severe coronavirus disease (COVID-19) among pregnant women compared to nonpregnant women. The risk in middle-income countries where the distributions of age groups and preexisting conditions may differ is less known. OBJECTIVES: To determine whether pregnant women with SARS-CoV-2 infection are at increased risk for severe COVID-19 compared to nonpregnant women in Colombia. METHODS: We analysed national surveillance data from Colombia, of women aged 15-44 years with laboratory-confirmed infection with SARS-CoV-2 by molecular or antigen testing, from 6 March 2020 to 12 December 2020. An enhanced follow-up of pregnant women with COVID-19 was established to monitor pregnancy and birth outcomes. RESULTS: Of 371,363 women aged 15-44 years with laboratory-confirmed SARS-CoV-2 infection, 1.5% (n = 5614) were reported as pregnant; among those, 2610 (46.5%) were considered a complete pregnancy for reporting purposes at the time of analysis. Hospitalisation (23.9%) and death (1.3%) occurred more frequently among pregnant symptomatic women compared to nonpregnant symptomatic women (2.9% and 0.3%, respectively). Compared to nonpregnant symptomatic women, pregnant symptomatic women were at increased risk of hospitalisation (adjusted risk ratio [RR] 2.19, 95% confidence interval [CI] 2.07, 2.32) and death (RR 1.82, 95% CI 1.60, 2.07), after adjusting for age, type of health insurance and presence of certain underlying medical conditions. Among complete pregnancies, 55 (2.1%) were pregnancy losses, 72 (2.8%) resulted in term low birthweight infants and 375 (14.4%) were preterm deliveries. CONCLUSIONS: Although pregnant women were infrequently reported with laboratory-confirmed SARS-CoV-2 infection, pregnant symptomatic women with COVID-19 were at increased risk for hospitalisation and death compared to nonpregnant symptomatic women. Almost all infections we reported on were third-trimester infections; ongoing follow-up is needed to determine pregnancy outcomes among women infected earlier in pregnancy. Healthcare providers should counsel pregnant women about preventive measures to protect from SARS-CoV-2 infection and when to seek care.