Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Environ Sci Technol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39229966

ABSTRACT

It has been debated whether wastewater treatment plants (WWTPs) primarily act to attenuate or amplify antibiotic resistance genes (ARGs). However, ARGs are highly diverse with respect to their resistance mechanisms, mobilities, and taxonomic hosts and therefore their behavior in WWTPs should not be expected to be universally conserved. We applied metagenomic sequencing to wastewater influent and effluent samples from 12 international WWTPs to classify the behavior of specific ARGs entering and exiting WWTPs. In total, 1079 different ARGs originating from a variety of bacteria were detected. This included ARGs that could be mapped to assembled scaffolds corresponding to nine human pathogens. While the relative abundance (per 16S rRNA gene) of ARGs decreased during treatment at 11 of the 12 WWTPs sampled and absolute abundance (per mL) decreased at all 12 WWTPs, increases in relative abundance were observed for 40% of the ARGs detected at the 12th WWTP. Also, the relative abundance of mobile genetic elements (MGE) increased during treatment, but the fraction of ARGs known to be transmissible between species decreased, thus demonstrating that increased MGE prevalence may not be generally indicative of an increase in ARGs. A distinct conserved resistome was documented in both influent and effluent across samples, suggesting that well-functioning WWTPs generally attenuate influent antibiotic resistance loads. This work helps inform strategies for wastewater surveillance of antibiotic resistance, highlighting the utility of tracking ARGs as indicators of treatment performance and relative risk reduction.

2.
PLoS Biol ; 18(4): e3000698, 2020 04.
Article in English | MEDLINE | ID: mdl-32243442

ABSTRACT

Have you ever sought to use metagenomic DNA sequences reported in scientific publications? Were you successful? Here, we reveal that metagenomes from no fewer than 20% of the papers found in our literature search, published between 2016 and 2019, were not deposited in a repository or were simply inaccessible. The proportion of inaccessible data within the literature has been increasing year-on-year. Noncompliance with Open Data is best predicted by the scientific discipline of the journal. The number of citations, journal type (e.g., Open Access or subscription journals), and publisher are not good predictors of data accessibility. However, many publications in high-impact factor journals do display a higher likelihood of accessible metagenomic data sets. Twenty-first century science demands compliance with the ethical standard of data sharing of metagenomes and DNA sequence data more broadly. Data accessibility must become one of the routine and mandatory components of manuscript submissions-a requirement that should be applicable across the increasing number of disciplines using metagenomics. Compliance must be ensured and reinforced by funders, publishers, editors, reviewers, and, ultimately, the authors.


Subject(s)
Access to Information , Metagenome , Publications/statistics & numerical data , Bibliometrics , Journal Impact Factor , Open Access Publishing
3.
Environ Sci Technol ; 57(26): 9713-9721, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37310875

ABSTRACT

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.) for profiling ARGs and suggest a universal unit (ARG copy per cell) for reporting such biological measurements of samples and improving the comparability of different surveillance efforts.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Animals , Humans , Anti-Bacterial Agents/pharmacology , RNA, Ribosomal, 16S/genetics , Drug Resistance, Microbial/genetics , Metagenomics/methods
4.
Environ Sci Technol ; 56(21): 14982-14993, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35759608

ABSTRACT

Wastewater-based surveillance (WBS) for disease monitoring is highly promising but requires consistent methodologies that incorporate predetermined objectives, targets, and metrics. Herein, we describe a comprehensive metagenomics-based approach for global surveillance of antibiotic resistance in sewage that enables assessment of 1) which antibiotic resistance genes (ARGs) are shared across regions/communities; 2) which ARGs are discriminatory; and 3) factors associated with overall trends in ARGs, such as antibiotic concentrations. Across an internationally sourced transect of sewage samples collected using a centralized, standardized protocol, ARG relative abundances (16S rRNA gene-normalized) were highest in Hong Kong and India and lowest in Sweden and Switzerland, reflecting national policy, measured antibiotic concentrations, and metal resistance genes. Asian versus European/US resistomes were distinct, with macrolide-lincosamide-streptogramin, phenicol, quinolone, and tetracycline versus multidrug resistance ARGs being discriminatory, respectively. Regional trends in measured antibiotic concentrations differed from trends expected from public sales data. This could reflect unaccounted uses, captured only by the WBS approach. If properly benchmarked, antibiotic WBS might complement public sales and consumption statistics in the future. The WBS approach defined herein demonstrates multisite comparability and sensitivity to local/regional factors.


Subject(s)
Sewage , Wastewater , RNA, Ribosomal, 16S/genetics , Genes, Bacterial , Anti-Bacterial Agents/pharmacology
5.
Environ Sci Technol ; 55(15): 10862-10874, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34282905

ABSTRACT

The global rise and spread of antibiotic resistance greatly challenge the treatment of bacterial infections. Wastewater treatment plants (WWTPs) harbor and discharge antibiotic resistance genes (ARGs) as environmental contaminants. However, the knowledge gap on the host identity, activity, and functionality of ARGs limits transmission and health risk assessment of the WWTP resistome. Hereby, a genome-centric quantitative metatranscriptomic approach was exploited to realize high-resolution qualitative and quantitative analyses of bacterial hosts of ARGs (i.e., multiresistance, pathogenicity, activity, and niches) in the 12 urban WWTPs. We found that ∼45% of 248 recovered genomes expressed ARGs against multiple classes of antibiotics, among which bacitracin and aminoglycoside resistance genes in Proteobacteria were the most prevalent scenario. Both potential pathogens and indigenous denitrifying bacteria were transcriptionally active hosts of ARGs. The almost unchanged relative expression levels of ARGs in the most resistant populations (66.9%) and the surviving ARG hosts including globally emerging pathogens (e.g., Aliarcobacter cryaerophilus) in treated WWTP effluent prioritize future examination on the health risks related to resistance propagation and human exposure in the receiving environment.


Subject(s)
Anti-Bacterial Agents , Water Purification , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Genes, Bacterial , Humans , Wastewater
6.
Environ Microbiol ; 19(12): 4993-5009, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28967165

ABSTRACT

Although the health of rivers is threatened by multiple anthropogenic stressors with increasing frequency, it remains an open question how riverine microbial communities respond to emerging micropollutants. Here, by using 16S rDNA amplicon sequencing of 60 water samples collected during different hydrological seasons, we investigated the spatio-temporal variation and the co-occurrence patterns of microbial communities in the anthropogenically impacted Jiulong River in China. The results indicated that the riverine microbial co-occurrence network had a nonrandom, modular structure, which was mainly shaped by the taxonomic relatedness of co-occurring species. Fecal indicator bacteria may survive for prolonged periods of time in river water, but they formed an independent module which had fewer interactions with typical freshwater bacteria. Multivariate analysis demonstrated that nutrients and micropollutants [i.e., pharmaceuticals and personal care products (PPCPs)] exerted combined effects in shaping α- and ß-diversity of riverine microbial communities. Remarkably, we showed that a hitherto unrecognized disruptive effect of PPCPs on the abundance variations of central species and module communities was stronger than the influence of physicochemical factors, suggesting the key role played by micropollutants for the microbial co-occurrence relationships in lotic ecosystems. Overall, our findings provide novel insights into community assembly in aquatic environments experiencing anthropogenic stresses.


Subject(s)
Bacteria/classification , Bacteria/metabolism , Rivers/chemistry , Rivers/microbiology , Water Pollutants, Chemical/adverse effects , Water Pollution/adverse effects , Bacteria/genetics , China , DNA, Ribosomal/genetics , Ecosystem , Microbial Consortia/genetics , Microbial Consortia/physiology , RNA, Ribosomal, 16S/genetics , Seasons
7.
Environ Sci Technol ; 51(12): 6857-6866, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28509546

ABSTRACT

Ammonia oxidation decreases the pH in wastewaters where alkalinity is limited relative to total ammonia. The activity of ammonia oxidizing bacteria (AOB), however, typically decreases with pH and often ceases completely in slightly acidic wastewaters. Nevertheless, nitrification at low pH has been reported in reactors treating human urine, but it has been unclear which organisms are involved. In this study, we followed the population dynamics of ammonia oxidizing organisms and reactor performance in synthetic fully hydrolyzed urine as the pH decreased over time in response to a decrease in the loading rate. Populations of the ß-proteobacterial Nitrosomonas europaea lineage were abundant at the initial pH close to 6, but the growth of a possibly novel Nitrosococcus-related AOB genus decreased the pH to the new level of 2.2, challenging the perception that nitrification is inhibited entirely at low pH values, or governed exclusively by ß-proteobacterial AOB or archaea. With the pH shift, nitrite oxidizing bacteria were not further detected, but nitrous acid (HNO2) was still removed through chemical decomposition to nitric oxide (NO) and nitrate. The growth of acid-tolerant γ-proteobacterial AOB should be prevented, by keeping the pH above 5.4, which is a typical pH limit for the N. europaea lineage. Otherwise, the microbial community responsible for high-rate nitrification can be lost, and strong emissions of hazardous volatile nitrogen compounds such as NO are likely.


Subject(s)
Ammonia , Bacteria , Nitrification , Wastewater , Hydrogen-Ion Concentration , Oxidation-Reduction
8.
Environ Sci Technol ; 51(22): 13061-13069, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-28976743

ABSTRACT

Antibiotic resistance is a pervasive global health threat. To combat the spread of resistance, it is necessary to consider all possible sources and understand the pathways and mechanisms by which resistance disseminates. Best management practices are urgently needed to provide barriers to the spread of resistance and maximize the lifespan of antibiotics as a precious resource. Herein we advise upon the need for coordinated national and international strategies, highlighting three essential components: (1) Monitoring, (2) Risk Assessment, and (3) Mitigation of antibiotic resistance. Central to all three components is What exactly to monitor, assess, and mitigate? We address this question within an environmental framework, drawing from fundamental microbial ecological processes driving the spread of resistance.


Subject(s)
Drug Resistance, Microbial , Global Health , Risk Assessment , Anti-Bacterial Agents
9.
Environ Sci Technol ; 50(21): 11862-11871, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27775322

ABSTRACT

Ozone, a strong oxidant and disinfectant, seems ideal to cope with future challenges of water treatment, such as micropollutants, multiresistant bacteria (MRB) and even intracellular antibiotic resistance genes (ARG), but information on the latter is scarce. In ozonation experiments we simultaneously determined kinetics and dose-dependent inactivation of Escherichia coli and its plasmid-encoded sulfonamide resistance gene sul1 in different water matrixes. Effects in E. coli were compared to an autochthonous wastewater community. Furthermore, resistance elimination by ozonation and post-treatment were studied in full-scale at a wastewater treatment plant (WWTP). Bacterial inactivation (cultivability, membrane damage) and degradation of sul1 were investigated using plate counts, flow cytometry and quantitative real-time PCR. In experiments with E. coli and the more ozone tolerant wastewater community disruption of intracellular genes was observed at specific ozone doses feasible for full-scale application, but flocs seemed to interfere with this effect. At the WWTP, regrowth during postozonation treatment partly compensated inactivation of MRB, and intracellular sul1 seemed unaffected by ozonation. Our findings indicate that ozone doses relevant for micropollutant abatement from wastewater do not eliminate intracellular ARG.


Subject(s)
Ozone , Wastewater/microbiology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Escherichia coli/drug effects , Waste Disposal, Fluid , Water Purification
10.
Water Environ Res ; 86(5): 407-16, 2014 May.
Article in English | MEDLINE | ID: mdl-24961067

ABSTRACT

Microbial characterization of aquifers should include samples of both suspended and attached microorganisms (biofilms). We investigated the effect of shear, sonication, and heat on the extraction of microorganisms from water-saturated, packed sediment columns containing established biofilms. Shear was studied by increasing flow velocity of the column eluent, sonication by treating the columns with ultrasound at different power levels, and heat by warming up the column eluent to different temperatures. Effluent cell concentrations were used as a measure of extraction efficiency. Dissolved organic carbon and adenosine tri-phosphate (ATP) concentrations were used to corroborate cell-extraction results. Additionally, ATP was used as an indicator of cell-membrane integrity. Extraction quality was determined by comparing terminal-restriction fragment length polymorphism (T-RFLP) profiles of extracted bacterial communities with destructively sampled sediment-community profiles. Sonication and heat increased the extraction efficiency up to 200-fold and yielded communities comparable to the sediment community. These treatments showed high potential for in-situ application in aquifers.


Subject(s)
Bacteria/isolation & purification , Geologic Sediments/microbiology , Water Microbiology , Hot Temperature , Sonication
11.
Water Environ Res ; 96(8): e11104, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39164119

ABSTRACT

In this study, we investigated the temporal and spatial quantitative changes in the concentration of antibiotic resistance gene (ARG) markers in a municipal wastewater treatment plant (WWTP). Four ARGs conferring resistance to different classes of antibiotics (ermB, sul1, tet[W], and blaCTXM) and a gene used as a proxy for ARG pollution (intl1) were quantified in two separate sampling campaigns covering two and half years of operation of the WWTP. First, a systematic monthly monitoring of multiple points in the inlet and the outlet revealed an absolute decrease in the concentration of all analyzed ARGs. However, the relative abundance of sul1 and intl1 genes relative to the total bacterial load (estimated using the universal marker 16S rDNA) increased in the outlet samples as compared to the inlet. To pinpoint the exact stage of removal and/or enrichment within the WWTP, a second sampling including the stages of the biological treatment was performed bimonthly. This revealed a distinct enrichment of sul1 and intl1 genes during the biological treatment phase. Moreover, the temporal and spatial variations in ARG abundance patterns within the WWTP underscored the complexity of the dynamics associated with the removal of ARGs during wastewater treatment. Understanding these dynamics is pivotal for developing efficient strategies to mitigate the dissemination of ARGs in aquatic environments. PRACTITIONER POINTS: Regular monitoring of ARG markers in WWTPs is essential to assess temporal and spatial changes, aiding in the development of effective mitigation strategies. Understanding the dynamics of ARG abundance during biological treatment is crucial for optimizing processes and minimizing dissemination in aquatic environments. Increased relative abundance of certain ARGs highlights potential enrichment during wastewater treatment, necessitating targeted interventions. Systematic monitoring of multiple points within WWTPs can provide valuable insights into the efficacy of treatment processes in reducing ARG levels over time. The complexity of ARG abundance patterns underscores the need to develop holistic approaches to tackle antibiotic resistance in wastewater systems.


Subject(s)
Drug Resistance, Microbial , Waste Disposal, Fluid , Wastewater , Wastewater/microbiology , Drug Resistance, Microbial/genetics , Waste Disposal, Fluid/methods , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Water Purification
12.
Microbiome ; 12(1): 164, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242535

ABSTRACT

BACKGROUND: Environmental reservoirs of antibiotic resistance pose a threat to human and animal health. Aquatic biofilms impacted by wastewater effluent (WW) are known environmental reservoirs for antibiotic resistance; however, the relative importance of biotic factors and abiotic factors from WW on the abundance of antibiotic resistance genes (ARGs) within aquatic biofilms remains unclear. Additionally, experimental evidence is limited within complex aquatic microbial communities as to whether genes bearing low sequence similarity to validated reference ARGs are functional as ARGs. RESULTS: To disentangle the effects of abiotic and biotic factors on ARG abundances, natural biofilms were previously grown in flume systems with different proportions of stream water and either ultrafiltered or non-ultrafiltered WW. In this study, we conducted deep shotgun metagenomic sequencing of 75 biofilm, stream, and WW samples from these flume systems and compared the taxonomic and functional microbiome and resistome composition. Statistical analysis revealed an alignment of the resistome and microbiome composition and a significant association with experimental treatment. Several ARG classes exhibited an increase in normalized metagenomic abundances in biofilms grown with increasing percentages of non-ultrafiltered WW. In contrast, sulfonamide and extended-spectrum beta-lactamase ARGs showed greater abundances in biofilms grown in ultrafiltered WW compared to non-ultrafiltered WW. Overall, our results pointed toward the dominance of biotic factors over abiotic factors in determining ARG abundances in WW-impacted stream biofilms and suggested gene family-specific mechanisms for ARGs that exhibited divergent abundance patterns. To investigate one of these specific ARG families experimentally, we biochemically characterized a new beta-lactamase from the Planctomycetota (Phycisphaeraceae). This beta-lactamase displayed activity in the cleavage of cephalosporin analog despite sharing a low sequence identity with known ARGs. CONCLUSIONS: This discovery of a functional planctomycete beta-lactamase ARG is noteworthy, not only because it was the first beta-lactamase to be biochemically characterized from this phylum, but also because it was not detected by standard homology-based ARG tools. In summary, this study conducted a metagenomic analysis of the relative importance of biotic and abiotic factors in the context of WW discharge and their impact on both known and new ARGs in aquatic biofilms. Video Abstract.


Subject(s)
Biofilms , Metagenomics , Rivers , Wastewater , beta-Lactamases , Biofilms/drug effects , Wastewater/microbiology , beta-Lactamases/genetics , Rivers/microbiology , Microbiota/drug effects , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Anti-Bacterial Agents/pharmacology , Planctomycetales/genetics , Planctomycetales/drug effects , Metagenome , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
13.
FEMS Microbiol Ecol ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39216995

ABSTRACT

Fresh produce is suggested to contribute highly to shaping the gut resistome. We investigated the impact of pig manure and irrigation water quality on microbiome and resistome of field-grown lettuce over an entire growth period. Lettuce was grown under four regimes, combining soil amendment with manure (with/without) with sprinkler irrigation using river water with an upstream wastewater input, disinfected by UV (with/without). Lettuce leaves, soil, and water samples were collected weekly and analyzed by bacterial cultivation, 16S rRNA gene amplicon sequencing, and shotgun metagenomics from total community DNA. Cultivation yielded only few clinically relevant antibiotic-resistant bacteria (ARB), but numbers of ARB on lettuce increased over time, while no treatment-dependent changes were observed. Microbiome analysis confirmed a temporal trend. Antibiotic resistance genes (ARGs) unique to lettuce and water included multidrug and ß-lactam ARGs, whereas lettuce and soil uniquely shared mainly glycopeptide and tetracycline ARGs. Surface water carried clinically relevant ARB (e.g. ESBL-producing Escherichia coli or Serratia fonticola) without affecting the overall lettuce resistome significantly. Resistance markers including biocide and metal resistance were increased in lettuce grown with manure, especially young lettuce (increased soil contact). Overall, while all investigated environments had their share as sources of the lettuce resistome, manure was the main source especially on young plants. We therefore suggest minimizing soil-vegetable contact to minimize resistance markers on fresh produce.

14.
Commun Biol ; 7(1): 706, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851788

ABSTRACT

When antimicrobial resistant bacteria (ARB) and genes (ARGs) reach novel habitats, they can become part of the habitat's microbiome in the long term if they are able to overcome the habitat's biotic resilience towards immigration. This process should become more difficult with increasing biodiversity, as exploitable niches in a given habitat are reduced for immigrants when more diverse competitors are present. Consequently, microbial diversity could provide a natural barrier towards antimicrobial resistance by reducing the persistence time of immigrating ARB and ARG. To test this hypothesis, a pan-European sampling campaign was performed for structured forest soil and dynamic riverbed environments of low anthropogenic impact. In soils, higher diversity, evenness and richness were significantly negatively correlated with relative abundance of >85% of ARGs. Furthermore, the number of detected ARGs per sample were inversely correlated with diversity. However, no such effects were present in the more dynamic riverbeds. Hence, microbiome diversity can serve as a barrier towards antimicrobial resistance dissemination in stationary, structured environments, where long-term, diversity-based resilience against immigration can evolve.


Subject(s)
Biodiversity , Drug Resistance, Bacterial , Microbiota , Soil Microbiology , Microbiota/genetics , Drug Resistance, Bacterial/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/drug effects , Genes, Bacterial , Rivers/microbiology , Anti-Bacterial Agents/pharmacology , Ecosystem
15.
Water Environ Res ; 85(6): 503-13, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23833813

ABSTRACT

Microbial characterization of aquifers should combine collection of suspended and attached microorganisms (biofilms). This study investigated chemical extraction of microorganisms from water-saturated, packed sediment containing established biofilms. It compares the use of different detachment-promoting agent (DPA) solutions with tap water as eluent in column experiments. Extraction efficiency was determined from cell concentrations in the column effluent. Adenosine triphosphate concentrations were measured to confirm cell extraction and as an indicator of cell membrane integrity. Quality of extracted bacterial communities was assessed by comparing their terminal restriction fragment length polymorphism profiles with destructively sampled sediment-community profiles. Extraction efficiency increased more than 8-fold when deionized water, D-amino acids, or enzymes were used as a DPA. Community profiles recovered by individual DPA solutions showed more pronounced differences at the level of rare microbial groups, whereas abundant groups appeared ubiquitous across treatments. These results suggest that comparison of communities extracted by different DPAs can provide improved information on the occurrence of rare microbial groups in biofilms.


Subject(s)
Geologic Sediments , Water Microbiology , Adenosine Triphosphate/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Biofilms , Flow Cytometry , Polymorphism, Restriction Fragment Length
16.
ISME J ; 17(11): 1993-2002, 2023 11.
Article in English | MEDLINE | ID: mdl-37684524

ABSTRACT

Wastewater treatment plants (WWTPs) are key sources of antimicrobial resistance genes (ARGs) that could influence the resistomes of microbial communities in various habitats of the receiving river ecosystem. However, it is currently unknown which habitats are most impacted and whether ARGs, like certain chemical contaminants, could be accumulated or enriched in the river ecosystem. We conducted a systematic metagenomic survey on the antibiotic resistomes of WWTP effluent, four riverine habitats (water, suspended particles, sediment, epilithic biofilm), and freshwater amphipod gut microbiomes. The impact of WWTP effluent on the downstream habitats was assessed in nine Swiss rivers. While there were significant differences in resistomes across habitats, the wastewater resistome was more similar to the resistome of receiving river water than to the resistomes of other habitats, and river water was the habitat most strongly impacted by the WWTPs effluent. The sulfonamide, beta-lactam, and aminoglycoside resistance genes were among the most abundant ARGs in the WWTP effluents, and especially aadA, sul1, and class A beta-lactamase genes showed significantly increased abundance in the river water of downstream compared to upstream locations (p < 0.05). However, this was not the case for the sediment, biofilm, and amphipod gut habitats. Accordingly, evidence for accumulation or enrichment of ARGs through the riverine food web was not identified. Our study suggests that monitoring riverine antimicrobial resistance determinants could be conducted using "co-occurrence" of aadA, sul1, and class A beta-lactamase genes as an indicator of wastewater-related pollution and should focus on the water as the most affected habitat.


Subject(s)
Anti-Bacterial Agents , Microbiota , Anti-Bacterial Agents/pharmacology , Wastewater , Genes, Bacterial , Drug Resistance, Microbial/genetics , Water , beta-Lactamases/genetics
17.
Front Microbiol ; 14: 1279041, 2023.
Article in English | MEDLINE | ID: mdl-37942081

ABSTRACT

Real-time quantitative PCR (qPCR) has been widely used to quantify gene copy numbers in microbial ecology. Despite its simplicity and straightforwardness, establishing qPCR assays is often impeded by the tedious process of producing qPCR standards by cloning the target DNA into plasmids. Here, we designed double-stranded synthetic DNA fragments from consensus sequences as qPCR standards by aligning microbial gene sequences (10-20 sequences per gene). Efficiency of standards from synthetic DNA was compared with plasmid standards by qPCR assays for different phylogenetic marker and functional genes involved in carbon (C) and nitrogen (N) cycling, tested with DNA extracted from a broad range of soils. Results showed that qPCR standard curves using synthetic DNA performed equally well to those from plasmids for all the genes tested. Furthermore, gene copy numbers from DNA extracted from soils obtained by using synthetic standards or plasmid standards were comparable. Our approach therefore demonstrates that a synthetic DNA fragment as qPCR standard provides comparable sensitivity and reliability to a traditional plasmid standard, while being more time- and cost-efficient.

18.
Nat Commun ; 14(1): 6591, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37852975

ABSTRACT

The factors that govern the geographical distribution of nitrogen fixation are fundamental to providing accurate nitrogen budgets in aquatic environments. Model-based insights have demonstrated that regional hydrodynamics strongly impact nitrogen fixation. However, the mechanisms establishing this physical-biological coupling have yet to be constrained in field surveys. Here, we examine the distribution of nitrogen fixation in Lake Tanganyika - a model system with well-defined hydrodynamic regimes. We report that nitrogen fixation is five times higher under stratified than under upwelling conditions. Under stratified conditions, the limited resupply of inorganic nitrogen to surface waters, combined with greater light penetration, promotes the activity of bloom-forming photoautotrophic diazotrophs. In contrast, upwelling conditions support predominantly heterotrophic diazotrophs, which are uniquely suited to chemotactic foraging in a more dynamic nutrient landscape. We suggest that these hydrodynamic regimes (stratification versus mixing) play an important role in governing both the rates and the mode of nitrogen fixation.


Subject(s)
Lakes , Nitrogen Fixation , Hydrodynamics , Tanzania , Nitrogen
19.
Appl Environ Microbiol ; 78(12): 4481-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22492459

ABSTRACT

Real-time quantitative PCR (qPCR) is a widely used technique in microbial community analysis, allowing the quantification of the number of target genes in a community sample. Currently, the standard-curve (SC) method of absolute quantification is widely employed for these kinds of analysis. However, the SC method assumes that the amplification efficiency (E) is the same for both the standard and the sample target template. We analyzed 19 bacterial strains and nine environmental samples in qPCR assays, targeting the nifH and 16S rRNA genes. The E values of the qPCRs differed significantly, depending on the template. This has major implications for the quantification. If the sample and standard differ in their E values, quantification errors of up to orders of magnitude are possible. To address this problem, we propose and test the one-point calibration (OPC) method for absolute quantification. The OPC method corrects for differences in E and was derived from the ΔΔC(T) method with correction for E, which is commonly used for relative quantification in gene expression studies. The SC and OPC methods were compared by quantifying artificial template mixtures from Geobacter sulfurreducens (DSM 12127) and Nostoc commune (Culture Collection of Algae and Protozoa [CCAP] 1453/33), which differ in their E values. While the SC method deviated from the expected nifH gene copy number by 3- to 5-fold, the OPC method quantified the template mixtures with high accuracy. Moreover, analyzing environmental samples, we show that even small differences in E between the standard and the sample can cause significant differences between the copy numbers calculated by the SC and the OPC methods.


Subject(s)
Bacterial Load/methods , Bacterial Load/standards , Environmental Microbiology , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Geobacter/isolation & purification , Nostoc commune/isolation & purification , Oxidoreductases/genetics , RNA, Ribosomal, 16S/genetics
20.
Appl Environ Microbiol ; 78(3): 695-704, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22101058

ABSTRACT

Chitin, which is a biopolymer of the amino sugar glucosamine (GlcN), is highly abundant in aquatic ecosystems, and its degradation is assigned a key role in the recycling of carbon and nitrogen. In order to study the significance of chitin decomposition in two temperate freshwater lakes with contrasting trophic and redox conditions, we measured the turnover rate of the chitin analog methylumbelliferyl-N,N'-diacetylchitobioside (MUF-DC) and the presence of chitinase (chiA) genes in zooplankton, water, and sediment samples. In contrast to the eutrophic and partially anoxic lake, chiA gene fragments were detectable throughout the oligotrophic water column and chiA copy numbers per ml of water were up to 15 times higher than in the eutrophic waters. For both lakes, the highest chiA abundance was found in the euphotic zone--the main habitat of zooplankton, but also the site of production of easily degradable algal chitin. The bulk of chitinase activity was measured in zooplankton samples and the sediments, where recalcitrant chitin is deposited. Both, chiA abundance and chitinase activity correlated well with organic carbon, nitrogen, and concentrations of particulate GlcN. Our findings show that chitin, although its overall contribution to the total organic carbon is small (~0.01 to 0.1%), constitutes an important microbial growth substrate in these temperate freshwater lakes, particularly where other easily degradable carbon sources are scarce.


Subject(s)
Bacteria/metabolism , Chitin/metabolism , Fresh Water/microbiology , Animals , Chitinases/genetics , Chitinases/metabolism , Geologic Sediments/microbiology , Hydrolysis , Hymecromone/analogs & derivatives , Hymecromone/metabolism , Oligosaccharides/metabolism , Zooplankton/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL