Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Pflugers Arch ; 476(3): 295-306, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38177874

ABSTRACT

Artificial light at night (ALAN) affects most of the population. Through the retinohypothalamic tract, ALAN modulates the activity of the central circadian oscillator and, consequently, various physiological systems, including the cardiovascular one. We summarised the current knowledge about the effects of ALAN on the cardiovascular system in diurnal and nocturnal animals. Based on published data, ALAN reduces the day-night variability of the blood pressure and heart rate in diurnal and nocturnal animals by increasing the nocturnal values of cardiovascular variables in diurnal animals and decreasing them in nocturnal animals. The effects of ALAN on the cardiovascular system are mainly transmitted through the autonomic nervous system. ALAN is also considered a stress-inducing factor, as glucocorticoid and glucose level changes indicate. Moreover, in nocturnal rats, ALAN increases the pressure response to load. In addition, ALAN induces molecular changes in the heart and blood vessels. Changes in the cardiovascular system significantly depend on the duration of ALAN exposure. To some extent, alterations in physical activity can explain the changes observed in the cardiovascular system after ALAN exposure. Although ALAN acts differently on nocturnal and diurnal animals, we can conclude that both exhibit a weakened circadian coordination among physiological systems, which increases the risk of future cardiovascular complications and reduces the ability to anticipate stress.


Subject(s)
Cardiovascular System , Light , Humans , Rats , Animals , Light Pollution , Blood Pressure , Heart Rate
2.
Int J Mol Sci ; 23(5)2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35270026

ABSTRACT

Prenatal hypoxia during the prenatal period can interfere with the developmental trajectory and lead to developing hypertension in adulthood. Prenatal hypoxia is often associated with intrauterine growth restriction that interferes with metabolism and can lead to multilevel changes. Therefore, we analysed the effects of prenatal hypoxia predominantly not associated with intrauterine growth restriction using publications up to September 2021. We focused on: (1) The response of cardiovascular regulatory mechanisms, such as the chemoreflex, adenosine, nitric oxide, and angiotensin II on prenatal hypoxia. (2) The role of the placenta in causing and attenuating the effects of hypoxia. (3) Environmental conditions and the mother's health contribution to the development of prenatal hypoxia. (4) The sex-dependent effects of prenatal hypoxia on cardiovascular regulatory mechanisms and the connection between hypoxia-inducible factors and circadian variability. We identified that the possible relationship between the effects of prenatal hypoxia on the cardiovascular regulatory mechanism may vary depending on circadian variability and phase of the days. In summary, even short-term prenatal hypoxia significantly affects cardiovascular regulatory mechanisms and programs hypertension in adulthood, while prenatal programming effects are not only dependent on the critical period, and sensitivity can change within circadian oscillations.


Subject(s)
Cardiovascular System , Hypertension , Prenatal Exposure Delayed Effects , Adult , Female , Fetal Growth Retardation , Humans , Hypoxia/complications , Pregnancy
3.
Life Sci ; 333: 122179, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37852575

ABSTRACT

AIMS: Early postnatal development can be significantly compromised by changes in factors provided by the mother, leading to increased vulnerability to hypertension in her offspring. TGR(mRen-2)27 (TGR) mothers, characterised by an overactivated renin-angiotensin system, exhibit altered ion composition in their breast milk. Therefore, we aimed to analyse the impact of cross-fostering on cardiovascular parameters in hypertensive TGR and normotensive Hannover Sprague-Dawley (HanSD) offspring. MATERIALS AND METHODS: We measured cardiovascular parameters in 5- to 10-week-old male offspring by telemetry. The expression of proteins related to vascular function was assessed by western blotting in the aortic samples obtained from 6- to 12-week-old male offspring. Plasma renin activity and plasma angiotensin II (Ang II) levels were evaluated by radioimmunoassay (RIA). KEY FINDINGS: The development of hypertension was in TGR accompanied by increased low-to-high frequency ratio (LF/HF; a marker of sympathovagal balance; 0.51 ± 0.16 in week 10). Furthermore, TGR exhibited increased aortic expression of mineralocorticoid receptor (MR; p < 0.05) and transforming growth factor beta type 1 (TGF-ß1; p = 0.002) compared to HanSD offspring. Fostering significantly decreased sympathovagal balance (0.23 ± 0.10 in week 10) and, transiently, plasma Ang II levels and MR expression in TGR offspring reared by HanSD mothers. SIGNIFICANCE: These findings highlight the importance of understanding the complex interplay between early life experiences, maternal factors, and later cardiovascular function. Understanding the mechanisms behind the observed effects may help to identify potential interventions to prevent the development of hypertension later in life.


Subject(s)
Hypertension , Kidney , Humans , Female , Animals , Rats , Male , Animals, Genetically Modified , Kidney/metabolism , Mothers , Renin , Rats, Sprague-Dawley , Blood Pressure/physiology , Angiotensin II/metabolism
4.
Hypertens Res ; 45(12): 1929-1944, 2022 12.
Article in English | MEDLINE | ID: mdl-36123396

ABSTRACT

The hypotensive effects of melatonin are based on a negative correlation between melatonin levels and blood pressure in humans. However, there is a positive correlation in nocturnal animals that are often used as experimental models in cardiovascular research, and the hypotensive effects and mechanism of melatonin action are often investigated in rats and mice. In rats, the hypotensive effects of melatonin have been studied in normotensive and spontaneously or experimentally induced hypertensive strains. In experimental animals, blood pressure is often measured indirectly during the light (passive) phase of the day by tail-cuff plethysmography, which has limitations regarding data quality and animal well-being compared to telemetry. Melatonin is administered to rats in drinking water, subcutaneously, intraperitoneally, or microinjected into specific brain areas at different times. Experimental data show that the hypotensive effects of melatonin depend on the experimental animal model, blood pressure measurement technique, and the route, time and duration of melatonin administration. The hypotensive effects of melatonin may be mediated through specific membrane G-coupled receptors located in the heart and arteries. Due to melatonin's lipophilic nature, its potential hypotensive effects can interfere with various regulatory mechanisms, such as nitric oxide and reactive oxygen species production and activation of the autonomic nervous and circadian systems. Based on the research conducted on rats, the cardiovascular effects of melatonin are modulatory, delayed, and indirect.


Subject(s)
Cardiovascular System , Hypertension , Hypotension , Melatonin , Humans , Rats , Animals , Mice , Melatonin/pharmacology , Melatonin/therapeutic use , Melatonin/physiology , Blood Pressure , Hypertension/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL