Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 325(6): H1418-H1429, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37861651

ABSTRACT

Females typically exhibit lower blood pressure (BP) during exercise than males. However, recent findings indicate that adjusting for maximal strength attenuates sex differences in BP during isometric handgrip (HG) exercise and postexercise ischemia (PEI; metaboreflex isolation). In addition, body size is associated with HG strength but its contribution to sex differences in exercising BP is less appreciated. Therefore, the purpose of this study was to determine whether adjusting for strength and body size would attenuate sex differences in BP during HG and PEI. We obtained beat-to-beat BP in 110 participants (36 females, 74 males) who completed 2 min of isometric HG exercise at 40% of their maximal voluntary contraction followed by 3 min of PEI. In a subset (11 females, 17 males), we collected muscle sympathetic nerve activity (MSNA). Statistical analyses included independent t tests and mixed models (sex × time) with covariate adjustment for 40% HG force, height2, and body surface area. Females exhibited a lower absolute 40% HG force than male participants (Ps < 0.001). Females exhibited lower Δsystolic, Δdiastolic, and Δmean BPs during HG and PEI than males (e.g., PEI, Δsystolic BP, 15 ± 11 vs. 23 ± 14 mmHg; P = 0.004). After covariate adjustment, sex differences in BP responses were attenuated. There were no sex differences in MSNA. In a smaller strength-matched cohort, there was no sex × time interactions for BP responses (e.g., PEI systolic BP, P = 0.539; diastolic BP, P = 0.758). Our data indicate that sex differences in exercising BP responses are attenuated after adjusting for muscle strength and body size.NEW & NOTEWORTHY When compared with young males, females typically exhibit lower blood pressure (BP) during exercise. Adjusting for maximal strength attenuates sex differences in BP during isometric handgrip (HG) exercise and postexercise ischemia (PEI), but the contribution of body size is unknown. Novel findings include adjustments for muscle strength and body size attenuate sex differences in BP reactivity during exercise and PEI, and sex differences in body size contribute to HG strength differences.


Subject(s)
Hand Strength , Sex Characteristics , Humans , Male , Female , Young Adult , Hand Strength/physiology , Reflex , Blood Pressure/physiology , Sympathetic Nervous System , Ischemia , Body Size , Muscle, Skeletal/innervation , Heart Rate
2.
Am J Physiol Regul Integr Comp Physiol ; 324(5): R666-R676, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36939211

ABSTRACT

High salt consumption increases blood pressure (BP) and cardiovascular disease risk by altering autonomic function and increasing inflammation. However, it is unclear whether salt manipulation alters resting and exercising heart rate variability (HRV), a noninvasive measure of autonomic function, in healthy young adults. The purpose of this investigation was to determine whether short-term high-salt intake 1) alters HRV at rest, during exercise, or exercise recovery and 2) increases the circulating concentration of the inflammatory biomarker monocyte chemoattractant protein 1 (MCP-1). With the use of a randomized, placebo-controlled, crossover study, 20 participants (8 females; 24 ± 4 yr old, 110 ± 10/64 ± 8 mmHg) consumed salt (3,900 mg sodium) or placebo capsules for 10 days each separated by ≥2 wk. We assessed HRV during 10 min of baseline rest, 50 min of cycling (60% V̇o2peak), and recovery. We quantified HRV using the standard deviation of normal-to-normal RR intervals, the root mean square of successive differences (RMSSD), and additional time and frequency domain metrics of HRV. Plasma samples were collected to assess MCP-1 concentration. No main effect of high salt or condition × time interaction was observed for HRV metrics. However, acute exercise reduced HRV (e.g., RMSSD time: P < 0.001, condition: P = 0.877, interaction: P = 0.422). High salt elevated plasma MCP-1 (72.4 ± 12.5 vs. 78.14 ± 14.7 pg/mL; P = 0.010). Irrespective of condition, MCP-1 was moderately associated (P values < 0.05) with systolic (r = 0.32) and mean BP (r = 0.33). Short-term high-salt consumption does not affect HRV; however, it increases circulating MCP-1, which may influence BP in young adults.


Subject(s)
Chemokine CCL2 , Sodium Chloride, Dietary , Female , Humans , Young Adult , Heart Rate/physiology , Cross-Over Studies , Exercise
3.
Am J Physiol Renal Physiol ; 322(4): F392-F402, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35157527

ABSTRACT

In rodents and older patients with elevated blood pressure (BP), high dietary sodium increases excretion of biomarkers of kidney injury, but it is unclear whether this effect occurs in healthy young adults. The purpose of this study was to determine whether short-term high dietary salt increases urinary excretion of the kidney injury biomarkers neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) in healthy young adults. Twenty participants participated in a double-blind, placebo-controlled, randomized crossover study. For 10 days each, participants were asked to consume salt (3,900 mg sodium) or placebo capsules. We measured BP during each visit, obtained 24-h urine samples for measurements of electrolytes, NGAL, and KIM-1, and assessed creatinine clearance. Compared with placebo, salt loading increased daily urinary sodium excretion (placebo: 130.3 ± 62.4 mmol/24 h vs. salt: 287.2 ± 72.0 mmol/24 h, P < 0.01). There was no difference in mean arterial BP (placebo: 77 ± 7 mmHg vs. salt: 77 ± 6 mmHg, P = 0.83) between conditions. However, salt loading increased the urinary NGAL excretion rate (placebo: 59.8 ± 44.4 ng/min vs. salt: 80.8 ± 49.5 ng/min, P < 0.01) and increased creatinine clearance (placebo: 110.5 ± 32.9 mL/min vs. salt: 145.0 ± 24.9 mL/min, P < 0.01). Urinary KIM-1 excretion was not different between conditions. In conclusion, in healthy young adults 10 days of dietary salt loading increased creatinine clearance and increased urinary excretion of the kidney injury biomarker marker NGAL but not KIM-1.NEW & NOTEWORTHY In healthy young adults, 10 days of dietary salt loading increased creatinine clearance and increased urinary excretion of the kidney injury biomarker marker neutrophil gelatinase-associated lipocalin despite no change in resting blood pressure.


Subject(s)
Sodium Chloride, Dietary , Biomarkers/urine , Creatinine/urine , Cross-Over Studies , Hepatitis A Virus Cellular Receptor 1/metabolism , Humans , Kidney Function Tests , Lipocalin-2/urine , Sodium Chloride, Dietary/adverse effects , Young Adult
4.
Am J Physiol Regul Integr Comp Physiol ; 318(1): R112-R121, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31617739

ABSTRACT

High dietary salt increases arterial blood pressure variability (BPV) in salt-resistant, normotensive rodents and is thought to result from elevated plasma [Na+] sensitizing central sympathetic networks. Our purpose was to test the hypothesis that water deprivation (WD)-induced elevations in serum [Na+] augment BPV via changes in baroreflex function and sympathetic vascular transduction in humans. In a randomized crossover fashion, 35 adults [17 female/18 male, age: 25 ± 4 yr, systolic/diastolic blood pressure (BP): 107 ± 11/60 ± 7 mmHg, body mass index: 23 ± 3 kg/m2] completed two hydration protocols: a euhydration control condition (CON) and a stepwise reduction in water intake over 3 days, concluding with 16 h of WD. We assessed blood and urine electrolyte concentrations and osmolality, resting muscle sympathetic nerve activity (MSNA; peroneal microneurography; 18 paired recordings), beat-to-beat BP (photoplethysmography), common femoral artery blood flow (Doppler ultrasound), and heart rate (single-lead ECG). A subset of participants (n = 25) underwent ambulatory BP monitoring during day 3 of each protocol. We calculated average real variability as an index of BPV. WD increased serum [Na+] (141.0 ± 2.3 vs. 142.1 ± 1.7 mmol/L, P < 0.01) and plasma osmolality (288 ± 4 vs. 292 ± 5 mosmol/kg H2O, P < 0.01). However, WD did not increase beat-to-beat (1.9 ± 0.4 vs. 1.8 ± 0.4 mmHg, P = 0.24) or ambulatory daytime (9.6 ± 2.1 vs. 9.4 ± 3.3 mmHg, P = 0.76) systolic BPV. Additionally, sympathetic baroreflex sensitivity (P = 0.20) and sympathetic vascular transduction were not different after WD (P = 0.17 for peak Δmean BP following spontaneous MSNA bursts). These findings suggest that, despite modestly increasing serum [Na+], WD does not affect BPV, arterial baroreflex function, or sympathetic vascular transduction in healthy young adults.


Subject(s)
Blood Pressure , Water Deprivation , Adult , Baroreflex/physiology , Blood Pressure Monitoring, Ambulatory , Cross-Over Studies , Female , Heart Rate/physiology , Humans , Male , Time Factors , Young Adult
5.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R463-R471, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30794437

ABSTRACT

Previous studies have demonstrated an inverse relation between resting muscle sympathetic nerve activity (MSNA) and vasoconstrictor responsiveness (i.e., sympathetic transduction), such that those with high resting MSNA have low vascular responsiveness, and vice versa. The purpose of this investigation was to determine whether biological sex influences the balance between resting MSNA and beat-to-beat sympathetic transduction. We measured blood pressure (BP) and MSNA during supine rest in 54 healthy young adults (27 females: 23 ± 4 yr, 107 ± 8/63 ± 8 mmHg; 27 males: 25 ± 3 yr, 115 ± 11/64 ± 7 mmHg; means ± SD). We quantified beat-to-beat fluctuations in mean arterial pressure (MAP, mmHg) and limb vascular conductance (LVC, %) for 10 cardiac cycles after each MSNA burst using signal averaging, an index of sympathetic vascular transduction. In females, there was no correlation between resting MSNA (burst incidence; burst/100 heartbeats) and peak ΔMAP (r = -0.10, P = 0.62) or peak ΔLVC (r = -0.12, P = 0.63). In males, MSNA was related to peak ΔMAP (r = -0.50, P = 0.01) and peak ΔLVC (r = 0.49, P = 0.03); those with higher resting MSNA had blunted increases in MAP and reductions in LVC in response to a burst of MSNA. In a sub-analysis, we performed a median split between high- versus low-MSNA status on ΔMAP and ΔLVC within each sex and found that only males demonstrated a significant difference in ΔMAP and ΔLVC between high- versus low-MSNA groups. These findings support an inverse relation between resting MSNA and sympathetic vascular transduction in males only and advance our understanding on the influence of biological sex on sympathetic nervous system-mediated alterations in beat-to-beat BP regulation.


Subject(s)
Arterial Pressure , Muscle, Skeletal/blood supply , Muscle, Skeletal/innervation , Sympathetic Nervous System/physiology , Vasoconstriction , Adult , Age Factors , Blood Flow Velocity , Female , Healthy Volunteers , Humans , Male , Regional Blood Flow , Sex Factors , Young Adult
7.
J Neurophysiol ; 119(4): 1257-1265, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29357474

ABSTRACT

Elevated plasma osmolality (pOsm) has been shown to increase resting sympathetic nerve activity in animals and humans. The present study tested the hypothesis that increases in pOsm and serum sodium (sNa+) concentration would exaggerate muscle sympathetic nerve activity (MSNA) and blood pressure (BP) responses to handgrip (HG) exercise and postexercise ischemia (PEI). BP and MSNA were measured during HG followed by PEI before and after a 23-min hypertonic saline infusion (HSI-3% NaCl). Eighteen participants (age 23 ± 1 yr; BMI 24 ± 1 kg/m2) completed the protocol; pOsm and sNa+ increased from pre- to post-HSI (285 ± 1 to 291 ± 1 mosmol/kg H2O; 138.2 ± 0.3 to 141.3 ± 0.4 mM; P < 0.05 for both). Resting mean BP (90 ± 2 vs. 92 ± 1 mmHg) and MSNA (11 ± 2 vs. 15 ± 2 bursts/min) were increased pre- to post-HSI ( P < 0.05 for both). Mean BP responses to HG (106 ± 2 vs. 111 ± 2 mmHg, P < 0.05) and PEI (102 ± 2 vs. 107 ± 2 mmHg, P < 0.05) were higher post-HSI. Similarly, MSNA during HG (20 ± 2 vs. 29 ± 2 bursts/min, P < 0.05) and PEI (19 ± 2 vs. 24 ± 3 bursts/min, P < 0.05) were greater post-HSI. In addition, the change in MSNA was greater post-HSI during HG (Δ9 ± 2 vs. Δ13 ± 3 bursts/min, P < 0.05). A second set of participants ( n = 13, age 23 ± 1 yr; BMI 24 ± 1 kg/m2) completed a time control (TC) protocol consisting of quiet rest instead of an infusion. The TC condition yielded no change in resting sNa+, pOsm, mean BP, or MSNA (all P > 0.05); responses to HG and PEI were not different pre- to post-quiet rest ( P > 0.05). In summary, acutely increasing pOsm and sNa+ exaggerates BP and MSNA responses during HG exercise and PEI. NEW & NOTEWORTHY Elevated plasma osmolality has been shown to increase resting sympathetic activity and blood pressure. This study provides evidence that acute elevations in plasma osmolality and serum sodium exaggerated muscle sympathetic nerve activity and blood pressure responses during exercise pressor reflex activation in healthy young adults.


Subject(s)
Blood Pressure/physiology , Exercise/physiology , Muscle, Skeletal/physiology , Plasma/chemistry , Saline Solution, Hypertonic/administration & dosage , Sodium/blood , Sympathetic Nervous System/physiology , Adult , Female , Hand Strength/physiology , Humans , Male , Osmolar Concentration , Young Adult
8.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R688-R695, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29949407

ABSTRACT

High dietary sodium intake has been linked to alterations in neurally mediated cardiovascular function, but the effects of high sodium on cardiovagal baroreflex sensitivity (cBRS) in healthy adults are unknown. The purpose of this study was to determine whether high dietary sodium alters cBRS and heart rate variability (HRV) and whether acute intravenous sodium loading similarly alters cBRS and HRV. High dietary sodium (300 mmol/day, 7 days) was compared with low dietary sodium (20 mmol/day, 7 days; randomized) in 14 participants (38 ± 4 yr old, 23 ± 1 kg/m2 body mass index, 7 women). Acute sodium loading was achieved via a 23-min intravenous hypertonic saline infusion (HSI) in 14 participants (22 ± 1 yr old, 23 ± 1 kg/m2 body mass index, 7 women). During both protocols, participants were supine for 5 min during measurement of beat-to-beat blood pressure (photoplethysmography) and R-R interval (ECG). cBRS was evaluated using the sequence method. Root mean square of successive differences in R-R interval (RMSSD) was used as an index of HRV. Serum sodium (137.4 ± 0.7 vs. 139.9 ± 0.5 meq/l, P < 0.05), plasma osmolality (285 ± 1 vs. 289 ± 1 mosmol/kgH2O, P < 0.05), cBRS (18 ± 2 vs. 26 ± 3 ms/mmHg, P < 0.05), and RMSSD (62 ± 6 vs. 79 ± 10 ms, P < 0.05) were increased following high-sodium diet intake compared with low-sodium diet intake. HSI increased serum sodium (138.1 ± 0.4 vs. 141.1 ± 0.5 meq/l, P < 0.05) and plasma osmolality (286 ± 1 vs. 290 ± 1 mosmol/kgH2O, P < 0.05) but did not change cBRS (26 ± 5 vs. 25 ± 3 ms/mmHg, P = 0.73) and RMSSD (63 ± 9 vs. 63 ± 8 ms, P = 0.99). These data suggest that alterations in dietary sodium intake alter cBRS and HRV but that acute intravenous sodium loading does not alter these indexes of autonomic cardiovascular regulation.


Subject(s)
Baroreflex , Diet, Sodium-Restricted , Heart/innervation , Pressoreceptors/physiology , Sodium Chloride, Dietary/adverse effects , Vagus Nerve/physiology , Adult , Blood Pressure , Female , Heart Rate , Humans , Infusions, Intravenous , Male , Osmolar Concentration , Saline Solution, Hypertonic/administration & dosage , Saline Solution, Hypertonic/metabolism , Sodium Chloride, Dietary/blood , Time Factors , Young Adult
11.
Eur J Appl Physiol ; 115(5): 1037-45, 2015 May.
Article in English | MEDLINE | ID: mdl-25543325

ABSTRACT

PURPOSE: Investigate the effects of acute high-intensity exercise on common carotid artery (CCA) dimensions, stiffness, and wave intensity. METHODS: Fifty-five healthy men and women (22 ± 5 year; 24.5 ± 2.7 kg m(-2)) underwent 30 s of high-intensity cycling (HIC; Wingate anaerobic test). CCA diameter, stiffness [ß-stiffness, Elastic Modulus (E p)], pulsatility index (PI), forward wave intensities [due to LV contraction (W 1) and LV suction (W 2)], and reflected wave intensity [negative area (NA)] were assessed using a combination of Doppler ultrasound, wave intensity analysis, and applanation tonometry at baseline and immediately post-HIC. RESULTS: CCA ß-stiffness, E p, PI and pulse pressure increased significantly immediately post-HIC (p < 0.05). CCA diameter decreased acutely post-HIC (p < 0.05). There were also significant increases in W 1 and NA and a significant decrease in W 2 (p < 0.05). A significant correlation was found between change in W 1 and PI (r = 0.438, p < 0.05), from rest to recovery as well as a significant inverse correlation between W 2 and PI (r = -0.378, p < 0.05). Change in PI was not associated with change in CCA stiffness or NA (p > 0.05). CONCLUSIONS: Acute HIC results in CCA constriction and increases in CCA stiffness along with increases in hemodynamic pulsatility. The increase in pulsatility may be due to a combination of increased forward wave intensity from increased LV contractility into a smaller vessel (i.e. impaired matching of diameter and flow) coupled with reduced LV suction.


Subject(s)
Bicycling/physiology , Blood Pressure/physiology , Carotid Arteries/physiology , Hemodynamics/physiology , Physical Exertion/physiology , Adolescent , Adult , Blood Flow Velocity/physiology , Carotid Arteries/diagnostic imaging , Female , Humans , Male , Ultrasonography , Young Adult
12.
Geroscience ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110324

ABSTRACT

Hypogonadism is a risk factor for cardiovascular disease (CVD) in men related, in part, to increased oxidative stress. Elevated large artery stiffness and central pulsatile hemodynamics (e.g., pulse pressure and wave reflection magnitude) are independent risk factors for CVD. However, whether large artery stiffness and central pulsatile hemodynamics are (1) elevated in hypogonadal men independent of traditional CVD risk factors and (2) related to increased oxidative stress is unknown. Young men (N = 23; 30 ± 4 years) and middle-aged/older (MA/O) men with normal (> 400-1000 ng/dL; n = 57; 59 ± 7 years) or low testosterone (< 300 ng/dL; n = 21; 59 ± 7 years) underwent assessments of large artery stiffness (carotid ß-stiffness via ultrasonography) and central pulsatile hemodynamics (pulse wave analysis; SphygmoCor XCEL) following an infusion of saline or vitamin C to test the tonic suppression of vascular function by oxidative stress. Carotid stiffness differed by age (p < 0.001) and gonadal status within MA/O men (low testosterone vs. normal testosterone: 9.3 ± 0.7 vs. 8.0 ± 0.3U, p = 0.036). Central pulsatile hemodynamics did not differ by age or gonadal status (p > 0.119). Vitamin C did not alter carotid stiffness in any group (p > 0.171). There was a significant group × infusion interaction on aortic reflection magnitude (p = 0.015). Vitamin C treatment reduced aortic reflection magnitude in young and MA/O men with normal testosterone (both p < 0.001) but not MA/O men with low testosterone (p = 0.891). Collectively, hypogonadism may accelerate age-related large artery stiffening in MA/O men with low testosterone, independent of CVD risk factors; however, this is not related to increased reactive oxygen species sensitive to an acute vitamin C infusion.

15.
J Appl Physiol (1985) ; 133(2): 403-415, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35771224

ABSTRACT

Aging is associated with reductions in cardiovagal baroreflex sensitivity (cBRS), which increases cardiovascular disease risk. Preclinical data indicate that low testosterone reduces cBRS. We determined whether low testosterone is associated with greater age-associated reductions in cBRS in healthy men. Twenty-six men categorized as young (N = 6; age = 31 ± 4 yr; testosterone = 535 ± 60 ng/dL), middle-aged/older with normal (N = 10; aged 56 ± 3 yr; testosterone = 493 ± 85 ng/dL) or low (N = 10; age = 57 ± 6 yr; testosterone = 262 ± 31 ng/dL) testosterone underwent recordings of beat-by-beat blood pressure and R-R interval during rest and two Valsalva maneuvers, and measures of carotid artery compliance. IL-6, C-reactive protein (CRP), oxidized LDL cholesterol, and total antioxidant status (TAS) were also measured in blood. Middle-aged/older men had lower cBRS compared with young men (17.0 ± 6.5 ms/mmHg; P = 0.028); middle-age/older men with low testosterone had lower cBRS (5.5 ± 3.2 ms/mmHg; P = 0.039) compared with age-matched men with normal testosterone (10.7 ± 4.0 ms/mmHg). No differences existed between groups during Phase II of the Valsalva maneuver; middle-aged/older men with low testosterone had reduced cBRS (4.7 ± 2.6 ms/mmHg) compared with both young (12.8 ± 2.8 ms/mmHg; P < 0.001) and middle-aged/older men with normal testosterone (8.6 ± 4.4 ms/mmHg; P = 0.046). There were no differences in oxidized LDL (P = 0.882) or TAS across groups (P = 0.633). IL-6 was significantly higher in middle-aged/older men with low testosterone compared with the other groups (P < 0.05 for all) and inversely correlated with cBRS (r = -0.594, P = 0.007). Middle-aged/older men had reduced carotid artery compliance compared with young, regardless of testosterone status (P < 0.001). These observations indicate that low testosterone in middle-aged/older men may contribute to reductions in cBRS. These data suggest that increased inflammation may contribute to reductions in cBRS.NEW & NOTEWORTHY Middle-aged/older men with low testosterone have accelerated reductions in cardiovagal BRS compared with middle-aged/older men with normal testosterone. Increased concentrations of the proinflammatory cytokine IL-6 appear to contribute to the reductions in cardiovagal BRS in men with low testosterone.


Subject(s)
Baroreflex , Testosterone , Adult , Aged , Antioxidants/analysis , Baroreflex/physiology , Blood Pressure/physiology , Heart Rate/physiology , Humans , Interleukin-6/analysis , Interleukin-6/metabolism , Male , Middle Aged , Testosterone/analysis , Testosterone/deficiency , Testosterone/physiology
16.
J Clin Endocrinol Metab ; 107(2): e500-e514, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34597384

ABSTRACT

CONTEXT: Vascular aging, including endothelial dysfunction secondary to oxidative stress and inflammation, increases the risk for age-associated cardiovascular disease (CVD). Low testosterone in middle-aged/older men is associated with increased CVD risk. OBJECTIVE: We hypothesized that low testosterone contributes to age-associated endothelial dysfunction, related in part to greater oxidative stress and inflammation. METHODS: This cross-sectional study included 58 healthy, nonsmoking men categorized as young (N = 20; age 29 ± 4 years; testosterone 500 ± 58 ng/dL), middle-aged/older with higher testosterone (N = 20; age 60 ± 6 years; testosterone 512 ± 115 ng/dL), and middle-aged/older lower testosterone (N = 18; age 59 ± 8 years; testosterone 269 ± 48 ng/dL). Brachial artery flow-mediated dilation (FMDBA) was measured during acute infusion of saline (control) and vitamin C (antioxidant). Markers of oxidative stress (total antioxidant status and oxidized low-density lipoprotein cholesterol), inflammation (interleukin [IL]-6 and C-reactive protein [CRP]), and androgen deficiency symptoms were also examined. RESULTS: During saline, FMDBA was reduced in middle-aged/older compared with young, regardless of testosterone status (P < 0.001). FMDBA was reduced in middle-aged/older lower testosterone (3.7% ± 2.0%) compared with middle-aged/older higher testosterone (5.7% ± 2.2%; P = 0.021), independent of symptoms. Vitamin C increased FMDBA (to 5.3% ± 1.6%; P = 0.022) in middle-aged/older lower testosterone but had no effect in young (P = 0.992) or middle-aged/older higher testosterone (P = 0.250). FMDBA correlated with serum testosterone (r = 0.45; P < 0.001), IL-6 (r = -0.41; P = 0.002), and CRP (r = -0.28; P = 0.041). CONCLUSION: Healthy middle-aged/older men with low testosterone appear to have greater age-associated endothelial dysfunction, related in part to greater oxidative stress and inflammation. These data suggest that low testosterone concentrations may contribute to accelerated vascular aging in men.


Subject(s)
Aging/metabolism , Cardiovascular Diseases/epidemiology , Endothelium, Vascular/physiopathology , Testosterone/deficiency , Adolescent , Adult , Aged , Aging/blood , Aging/immunology , Blood Flow Velocity , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Cross-Sectional Studies , Endothelium, Vascular/diagnostic imaging , Heart Disease Risk Factors , Humans , Male , Middle Aged , Oxidative Stress/immunology , Plethysmography , Testosterone/blood , Ultrasonography, Doppler , Young Adult
17.
J Appl Physiol (1985) ; 130(1): 96-103, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33151774

ABSTRACT

Aging is associated with reductions in endothelial function, observations primarily reported using brachial artery ultrasound. There is growing interest in the use of peripheral artery tonometry (PAT) of microvessels in the fingertip to assess endothelial function because it is less technically demanding and has a high sensitivity and specificity for assessing coronary endothelial function. Moreover, similar to brachial artery flow-mediated dilation (FMD), PAT predicts cardiovascular disease outcomes. However, the relationship between PAT and FMD have yet to be examined in the context of aging. To address this question, reactive hyperemic index (RHI) using EndoPAT and FMD using brachial artery ultrasound were assessed after 5 min of forearm ischemia in 20 younger (18-40 yr old; 29 ± 4 yr) and 20 older (60-75 yr old; 65 ± 4 yr) healthy adult men. Higher values of both FMD and RHI indicate better endothelial function. Endothelial function assessed via brachial artery FMD was lower in older (4.8 ± 2.1%), compared with younger (7.5 ± 1.6%) men (P < 0.001). In contrast, the RHI assessed via PAT was greater in older (2.2 ± 0.6), compared with younger (1.8 ± 0.5) men (P = 0.014). FMD and RHI were not correlated (r = -0.15; P = 0.35). We conclude that PAT may not be an appropriate measure to evaluate age-associated changes in endothelial function.NEW & NOTEWORTHY Microvessel endothelial function assessed via finger plethysmography may not reflect age-associated reductions in large artery endothelial function assessed via brachial artery flow-mediated dilation.


Subject(s)
Hyperemia , Vasodilation , Adult , Aged , Aging , Brachial Artery , Endothelium, Vascular , Humans , Male , Regional Blood Flow
18.
Auton Neurosci ; 234: 102826, 2021 09.
Article in English | MEDLINE | ID: mdl-34058717

ABSTRACT

High dietary sodium impairs cerebral blood flow regulation in rodents and is associated with increased stroke risk in humans. However, the effects of multiple days of high dietary sodium on cerebral blood flow regulation in humans is unknown. Therefore, the purpose of this study was to determine whether ten days of high dietary sodium impairs cerebral blood flow regulation. Ten participants (3F/7M; age: 30 ± 10 years; blood pressure (BP): 113 ± 8/62 ± 9 mmHg) participated in this randomized, cross-over design study. Participants were placed on 10-day diets that included either low- (1000 mg/d), medium- (2300 mg/d) or high- (7000 mg/d) sodium separated by ≥four weeks. Urinary sodium excretion, beat-to-beat BP (finger photoplethysmography), middle cerebral artery velocity (transcranial Doppler), and end-tidal carbon dioxide (capnography) was measured. Dynamic cerebral autoregulation during a ten-minute baseline was calculated and cerebrovascular reactivity assessed by determining the percent change in middle cerebral artery blood flow velocity to hypercapnia (8% CO2, 21% oxygen, balance nitrogen) and hypocapnia (via mild hyperventilation). Urinary sodium excretion increased in a stepwise manner (ANOVA P = 0.001) from the low, to medium, to high condition. There were no differences in dynamic cerebral autoregulation between conditions. While there was a trend for a difference during cerebrovascular reactivity to hypercapnia (ANOVA P = 0.06), this trend was abolished when calculating cerebrovascular conductance (ANOVA: P = 0.28). There were no differences in cerebrovascular reactivity (ANOVA P = 0.57) or conductance (ANOVA: P = 0.73) during hypocapnia. These data suggest that ten days of a high sodium diet does not impair cerebral blood flow regulation in healthy adults.


Subject(s)
Sodium, Dietary , Adult , Blood Flow Velocity , Blood Pressure , Carbon Dioxide , Cerebrovascular Circulation , Diet , Humans , Hypercapnia , Hypocapnia , Ultrasonography, Doppler, Transcranial
19.
Biol Sex Differ ; 11(1): 18, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32295637

ABSTRACT

Large elastic arterial stiffening and endothelial dysfunction are phenotypic characteristics of vascular aging, a major risk factor for age-associated cardiovascular diseases. Compared to men, vascular aging in women appears to be slowed until menopause, whereafter vascular aging accelerates to match that seen in men. These sex differences in vascular aging have been attributed to changes in sex hormones that occur with aging. Although the role of estradiol in vascular aging in women has been highlighted in recent aging research, little is known about the impact of declining testosterone concentrations in both sexes. Importantly, while androgen concentrations generally decline with age in men, there are data that indicate reductions in androgen concentrations in women as well. Evidence suggests that low testosterone is associated with impaired endothelial function and increased arterial stiffness in men, although the effect of androgens on vascular aging in women remains unclear. Testosterone may modulate vascular aging by mitigating the effects of oxidative stress and inflammation, although there is sex specificity to this effect. The purpose of this review is to present and summarize the research regarding sex differences in vascular aging in response to androgens, specifically testosterone. Because exercise is a potent lifestyle factor for slowing and reversing vascular aging, we briefly summarize the available literature regarding the regulatory function of testosterone on vascular adaptations to exercise training.


Subject(s)
Aging/physiology , Cardiovascular Diseases/physiopathology , Sex Characteristics , Testosterone/physiology , Animals , Exercise/physiology , Humans
20.
Nutrients ; 12(4)2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32290271

ABSTRACT

ANCHORS A-WHEY was a 12-week randomized controlled trial (RCT) designed to examine the effect of whey protein on large artery stiffness, cerebrovascular responses to cognitive activity and cognitive function in older adults. METHODS: 99 older adults (mean ± SD; age 67 ± 6 years, BMI 27.2 ± 4.7kg/m2, 45% female) were randomly assigned to 50g/daily of whey protein isolate (WPI) or an iso-caloric carbohydrate (CHO) control for 12 weeks (NCT01956994). Aortic stiffness was determined as carotid-femoral pulse wave velocity (cfPWV). Aortic hemodynamic load was assessed as the product of aortic systolic blood pressure and heart rate (Ao SBP × HR). Cerebrovascular response to cognitive activity was assessed as change in middle-cerebral artery (MCA) blood velocity pulsatility index (PI) during a cognitive perturbation (Stroop task). Cognitive function was assessed using a computerized neurocognitive battery. RESULTS: cfPWV increased slightly in CHO and significantly decreased in WPI (p < 0.05). Ao SBP × HR was unaltered in CHO but decreased significantly in WPI (p < 0.05). Although emotion recognition selectively improved with WPI (p < 0.05), WPI had no effect on other domains of cognitive function or MCA PI response to cognitive activity (p > 0.05 for all). CONCLUSIONS: Compared to CHO, WPI supplementation results in favorable reductions in aortic stiffness and aortic hemodynamic load with limited effects on cognitive function and cerebrovascular function in community-dwelling older adults.


Subject(s)
Aorta/physiopathology , Cerebrovascular Circulation , Cognition , Dietary Supplements , Elasticity , Hemodynamics , Independent Living , Nutritional Physiological Phenomena/physiology , Whey Proteins/administration & dosage , Age Factors , Aged , Dietary Carbohydrates/administration & dosage , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL