Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816615

ABSTRACT

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV Envelope Protein gp41 , HIV Infections , HIV-1 , Macaca mulatta , Animals , Humans , HIV Envelope Protein gp41/immunology , HIV Antibodies/immunology , Mice , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Vaccination , Broadly Neutralizing Antibodies/immunology , B-Lymphocytes/immunology , Nanoparticles/chemistry , Female , Complementarity Determining Regions/immunology , Epitopes/immunology
3.
Immunity ; 55(11): 2149-2167.e9, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36179689

ABSTRACT

Broadly neutralizing antibodies (bnAbs) to the HIV envelope (Env) V2-apex region are important leads for HIV vaccine design. Most V2-apex bnAbs engage Env with an uncommonly long heavy-chain complementarity-determining region 3 (HCDR3), suggesting that the rarity of bnAb precursors poses a challenge for vaccine priming. We created precursor sequence definitions for V2-apex HCDR3-dependent bnAbs and searched for related precursors in human antibody heavy-chain ultradeep sequencing data from 14 HIV-unexposed donors. We found potential precursors in a majority of donors for only two long-HCDR3 V2-apex bnAbs, PCT64 and PG9, identifying these bnAbs as priority vaccine targets. We then engineered ApexGT Env trimers that bound inferred germlines for PCT64 and PG9 and had higher affinities for bnAbs, determined cryo-EM structures of ApexGT trimers complexed with inferred-germline and bnAb forms of PCT64 and PG9, and developed an mRNA-encoded cell-surface ApexGT trimer. These methods and immunogens have promise to assist HIV vaccine development.


Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Humans , Broadly Neutralizing Antibodies , HIV Antibodies , env Gene Products, Human Immunodeficiency Virus , Antibodies, Neutralizing , Complementarity Determining Regions/genetics , HIV Infections/prevention & control
4.
PLoS Pathog ; 20(9): e1012241, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283948

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as volunteers challenged with ETEC, diarrheal severity is significantly increased in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.

5.
J Proteome Res ; 21(9): 2197-2210, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35972904

ABSTRACT

Emerin and lamin B receptor (LBR) are abundant transmembrane proteins of the nuclear envelope that are concentrated at the inner nuclear membrane (INM). Although both proteins interact with chromatin and nuclear lamins, they have distinctive biochemical and functional properties. Here, we have deployed proximity labeling using the engineered biotin ligase TurboID (TbID) and quantitative proteomics to compare the neighborhoods of emerin and LBR in cultured mouse embryonic fibroblasts. Our analysis revealed 232 high confidence proximity partners that interact selectively with emerin and/or LBR, 49 of which are shared by both. These included previously characterized NE-concentrated proteins, as well as a host of additional proteins not previously linked to emerin or LBR functions. Many of these are TM proteins of the ER, including two E3 ubiquitin ligases. Supporting these results, we found that 11/12 representative proximity relationships identified by TbID also were detected at the NE with the proximity ligation assay. Overall, this work presents methodology that may be used for large-scale mapping of the landscape of the INM and reveals a group of new proteins with potential functional connections to emerin and LBR.


Subject(s)
Lamin Type A , Proteomics , Animals , Fibroblasts/metabolism , Lamin Type A/metabolism , Membrane Proteins , Mice , Nuclear Proteins , Receptors, Cytoplasmic and Nuclear , Lamin B Receptor
6.
Anal Chem ; 93(40): 13651-13657, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34597027

ABSTRACT

Viruses can evade the host immune system by displaying numerous glycans on their surface "spike-proteins" that cover immune epitopes. We have developed an ultrasensitive "single-pot" method to assess glycan occupancy and the extent of glycan processing from high-mannose to complex forms at each N-glycosylation site. Though aimed at characterizing glycosylation of viral spike-proteins as potential vaccines, this method is applicable for the analysis of site-specific glycosylation of any glycoprotein.


Subject(s)
Epitopes/chemistry , Glycoproteins/chemistry , Mannose , Polysaccharides , Viral Fusion Proteins/chemistry , Glycosylation
7.
EMBO J ; 31(23): 4404-14, 2012 Nov 28.
Article in English | MEDLINE | ID: mdl-23103767

ABSTRACT

Tumour necrosis factor alpha (TNFα) is a potent cytokine that signals through nuclear factor kappa B (NFκB) to activate a subset of human genes. It is usually assumed that this involves RNA polymerases transcribing responsive genes wherever they might be in the nucleus. Using primary human endothelial cells, variants of chromosome conformation capture (including 4C and chromatin interaction analysis with paired-end tag sequencing), and fluorescence in situ hybridization to detect single nascent transcripts, we show that TNFα induces responsive genes to congregate in discrete 'NFκB factories'. Some factories further specialize in transcribing responsive genes encoding micro-RNAs that target downregulated mRNAs. We expect all signalling pathways to contain this extra leg, where responding genes are transcribed in analogous specialized factories.


Subject(s)
Gene Expression Regulation , MicroRNAs/metabolism , Tumor Necrosis Factor-alpha/metabolism , Chromosomes/ultrastructure , Cytokines/biosynthesis , Cytoplasm/metabolism , DNA-Directed RNA Polymerases/metabolism , Endothelial Cells/cytology , Humans , In Situ Hybridization , In Situ Hybridization, Fluorescence , N-Acetylglucosaminyltransferases/metabolism , NF-kappa B/metabolism , Protein Conformation , Repressor Proteins/metabolism , Signal Transduction , Smad Proteins/metabolism , Time Factors , Transcription, Genetic , Transforming Growth Factor beta/metabolism
8.
Nat Methods ; 8(11): 963-8, 2011 Sep 25.
Article in English | MEDLINE | ID: mdl-21946667

ABSTRACT

Human nuclei contain three RNA polymerases (I, II and III) that transcribe different groups of genes; the active forms of all three are difficult to isolate because they are bound to the substructure. Here we describe a purification approach for isolating active RNA polymerase complexes from mammalian cells. After isolation, we analyzed their protein content by mass spectrometry. Each complex represents part of the core of a transcription factory. For example, the RNA polymerase II complex contains subunits unique to RNA polymerase II plus various transcription factors but shares a number of ribonucleoproteins with the other polymerase complexes; it is also rich in polymerase II transcripts. We also describe a native chromosome conformation capture method to confirm that the complexes remain attached to the same pairs of DNA templates found in vivo.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Proteome , Transcription, Genetic , DNA-Directed RNA Polymerases/genetics , HeLa Cells , Humans , RNA, Messenger/genetics
9.
Front Immunol ; 15: 1426232, 2024.
Article in English | MEDLINE | ID: mdl-39119336

ABSTRACT

The HIV-1 envelope glycoprotein (Env) is the sole neutralizing determinant on the surface of the virus. The Env gp120 and gp41 subunits mediate receptor binding and membrane fusion and are generated from the gp160 precursor by cellular furins. This cleavage event is required for viral entry. One approach to generate HIV-1 neutralizing antibodies following immunization is to express membrane-bound Env anchored on the cell-surface by genetic means using the natural HIV gp41 transmembrane (TM) spanning domain. To simplify the process of Env trimer membrane expression we sought to remove the need for Env precursor cleavage while maintaining native-like conformation following genetic expression. To accomplish these objectives, we selected our previously developed 'native flexibly linked' (NFL) stabilized soluble trimers that are both near-native in conformation and cleavage-independent. We genetically fused the NFL construct to the HIV TM domain by using a short linker or by restoring the native membrane external proximal region, absent in soluble trimers, to express the full HIV Env ectodomain on the plasma membrane. Both forms of cell-surface NFL trimers, without and with the MPER, displayed favorable antigenic profiles by flow cytometry when expressed from plasmid DNA or mRNA. These results were consistent with the presence of well-ordered cell surface native-like trimeric Env, a necessary requirement to generate neutralizing antibodies by vaccination. Inoculation of rabbits with mRNA lipid nanoparticles (LNP) expressing membrane-bound stabilized HIV Env NFL trimers generated tier 2 neutralizing antibody serum titers in immunized animals. Multiple inoculations of mRNA LNPs generated similar neutralizing antibody titers compared to immunizations of matched NFL soluble proteins in adjuvant. Given the recent success of mRNA vaccines to prevent severe COVID, these are important developments for genetic expression of native-like HIV Env trimers in animals and potentially in humans.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV-1 , Nanoparticles , RNA, Messenger , env Gene Products, Human Immunodeficiency Virus , Animals , HIV Antibodies/immunology , HIV-1/immunology , Antibodies, Neutralizing/immunology , Humans , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , AIDS Vaccines/immunology , Rabbits , RNA, Messenger/immunology , RNA, Messenger/genetics , Lipids/immunology , Protein Multimerization , HIV Infections/immunology , HIV Infections/virology , HIV Infections/prevention & control , Female , Liposomes
10.
bioRxiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38766097

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as human volunteers challenged with ETEC, diarrheal severity is significantly increased severity in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of human volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected human volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.

SELECTION OF CITATIONS
SEARCH DETAIL