Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Antimicrob Agents Chemother ; 65(10): e0069321, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34339275

ABSTRACT

Mycobacterium tuberculosis metabolic state affects the response to therapy. Quantifying the effect of antimicrobials in the acid and nonreplicating metabolic phases of M. tuberculosis growth will help to optimize therapy for tuberculosis. As a brute-force approach to all possible drug combinations against M. tuberculosis in all different metabolic states is impossible, we have adopted a model-informed strategy to accelerate the discovery. Using multiple concentrations of each drug in time-kill studies, we examined single drugs and two- and three-drug combinations of pretomanid, moxifloxacin, and bedaquiline plus its active metabolite against M. tuberculosis in its acid-phase metabolic state. We used a nonparametric modeling approach to generate full distributions of interaction terms between pretomanid and moxifloxacin for susceptible and less susceptible populations. From the model, we could predict the 95% confidence interval of the simulated total bacterial population decline due to the 2-drug combination regimen of pretomanid and moxifloxacin and compare this to observed declines with 3-drug regimens. We found that the combination of pretomanid and moxifloxacin at concentrations equivalent to average or peak human concentrations effectively eradicated M. tuberculosis in its acid growth phase and prevented emergence of less susceptible isolates. The addition of bedaquiline as a third drug shortened time to total and less susceptible bacterial suppression by 8 days compared to the 2-drug regimen, which was significantly faster than the 2-drug kill.


Subject(s)
Mycobacterium tuberculosis , Animals , Antitubercular Agents/therapeutic use , Drug Combinations , Drug Therapy, Combination , Humans , Moxifloxacin
2.
Article in English | MEDLINE | ID: mdl-33782013

ABSTRACT

Ceftazidime (CAZ)-avibactam (AVI) is a ß-lactam/ß-lactamase inhibitor combination with activity against type A and type C ß-lactamases. Resistance emergence has been seen, with multiple mechanisms accounting for the resistance. We performed four experiments in the dynamic hollow-fiber infection model, delineating the linkage between drug exposure and both the rate of bacterial kill and resistance emergence by all mechanisms. The Pseudomonas aeruginosa isolate had MICs of 1.0 mg/liter (CAZ) and 4 mg/liter (AVI). We demonstrated that the time at ≥4.0 mg/liter AVI was linked to the rate of bacterial kill. Linkage to resistance emergence/suppression was more complex. In one experiment in which CAZ and AVI administration was intermittent and continuous, respectively, and in which AVI was given in unitary steps from 1 to 8 mg/liter, AVI at up to 3 mg/liter allowed resistance emergence, whereas higher values did not. The threshold value was 3.72 mg/liter as a continuous infusion to counterselect resistance (AVI area under the concentration-time curve [AUC] of 89.3 mg · h/liter). The mechanism involved a 7-amino-acid deletion in the Ω-loop region of the Pseudomonas-derived cephalosporinase (PDC) ß-lactamase. Further experiments in which CAZ and AVI were both administered intermittently with regimens above and below the AUC of 89.3 mg · h/liter resulted in resistance in the lower-exposure groups. Deletion mutants were not identified. Finally, in an experiment in which paired exposures as both continuous and intermittent infusions were performed, the lower value of 25 mg · h/liter by both profiles allowed selection of deletion mutants. Of the five instances in which these mutants were recovered, four had a continuous-infusion profile. Both continuous-infusion administration and low AVI AUC exposures have a role in selection of this mutation.


Subject(s)
Ceftazidime , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Ceftazidime/pharmacology , Cephalosporinase , Drug Combinations , Microbial Sensitivity Tests , Pseudomonas , Pseudomonas aeruginosa/genetics
SELECTION OF CITATIONS
SEARCH DETAIL