Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Annu Rev Immunol ; 35: 199-228, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28142322

ABSTRACT

Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.


Subject(s)
Immunity, Innate , Immunotherapy/methods , Intestinal Mucosa/immunology , Microbiota/immunology , Neoplasms/immunology , Adaptive Immunity , Animals , Antineoplastic Agents/therapeutic use , Carcinogenesis , Humans , Inflammation , Neoplasms/microbiology , Neoplasms/therapy , Wound Healing
2.
Cell ; 171(5): 1015-1028.e13, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29056339

ABSTRACT

Laboratory mice, while paramount for understanding basic biological phenomena, are limited in modeling complex diseases of humans and other free-living mammals. Because the microbiome is a major factor in mammalian physiology, we aimed to identify a naturally evolved reference microbiome to better recapitulate physiological phenomena relevant in the natural world outside the laboratory. Among 21 distinct mouse populations worldwide, we identified a closely related wild relative to standard laboratory mouse strains. Its bacterial gut microbiome differed significantly from its laboratory mouse counterpart and was transferred to and maintained in laboratory mice over several generations. Laboratory mice reconstituted with natural microbiota exhibited reduced inflammation and increased survival following influenza virus infection and improved resistance against mutagen/inflammation-induced colorectal tumorigenesis. By demonstrating the host fitness-promoting traits of natural microbiota, our findings should enable the discovery of protective mechanisms relevant in the natural world and improve the modeling of complex diseases of free-living mammals. VIDEO ABSTRACT.


Subject(s)
Gastrointestinal Microbiome , Mice/classification , Mice/microbiology , Animals , Animals, Laboratory , Animals, Wild , Carcinogenesis/immunology , Disease Resistance , Female , Male , Maryland , Mice/immunology , Mice, Inbred C57BL , Peromyscus , Virus Diseases/immunology
3.
Immunity ; 49(5): 943-957.e9, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30389414

ABSTRACT

Although commensal flora is involved in the regulation of immunity, the interplay between cytokine signaling and microbiota in atherosclerosis remains unknown. We found that interleukin (IL)-23 and its downstream target IL-22 restricted atherosclerosis by repressing pro-atherogenic microbiota. Inactivation of IL-23-IL-22 signaling led to deterioration of the intestinal barrier, dysbiosis, and expansion of pathogenic bacteria with distinct biosynthetic and metabolic properties, causing systemic increase in pro-atherogenic metabolites such as lipopolysaccharide (LPS) and trimethylamine N-oxide (TMAO). Augmented disease in the absence of the IL-23-IL-22 pathway was mediated in part by pro-atherogenic osteopontin, controlled by microbial metabolites. Microbiota transfer from IL-23-deficient mice accelerated atherosclerosis, whereas microbial depletion or IL-22 supplementation reduced inflammation and ameliorated disease. Our work uncovers the IL-23-IL-22 signaling as a regulator of atherosclerosis that restrains expansion of pro-atherogenic microbiota and argues for informed use of cytokine blockers to avoid cardiovascular side effects driven by microbiota and inflammation.


Subject(s)
Atherosclerosis/etiology , Atherosclerosis/metabolism , Diet , Gastrointestinal Microbiome , Homeostasis , Interleukin-23/metabolism , Interleukins/metabolism , Animals , Atherosclerosis/pathology , Biomarkers , Disease Models, Animal , Disease Progression , Gene Expression , Immunophenotyping , Interleukin-23/deficiency , Lipid Metabolism , Mice , Mice, Knockout , Osteopontin/genetics , Osteopontin/metabolism , Signal Transduction , Interleukin-22
4.
J Transl Med ; 22(1): 269, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475767

ABSTRACT

BACKGROUND: Chemotherapy is a primary treatment for cancer, but its efficacy is often limited by cancer-associated bacteria (CAB) that impair tumor suppressor functions. Our previous research found that Mycoplasma fermentans DnaK, a chaperone protein, impairs p53 activities, which are essential for most anti-cancer chemotherapeutic responses. METHODS: To investigate the role of DnaK in chemotherapy, we treated cancer cell lines with M. fermentans DnaK and then with commonly used p53-dependent anti-cancer drugs (cisplatin and 5FU). We evaluated the cells' survival in the presence or absence of a DnaK-binding peptide (ARV-1502). We also validated our findings using primary tumor cells from a novel DnaK knock-in mouse model. To provide a broader context for the clinical significance of these findings, we investigated human primary cancer sequencing datasets from The Cancer Genome Atlas (TCGA). We identified F. nucleatum as a CAB carrying DnaK with an amino acid composition highly similar to M. fermentans DnaK. Therefore, we investigated the effect of F. nucleatum DnaK on the anti-cancer activity of cisplatin and 5FU. RESULTS: Our results show that both M. fermentans and F. nucleatum DnaKs reduce the effectiveness of cisplatin and 5FU. However, the use of ARV-1502 effectively restored the drugs' anti-cancer efficacy. CONCLUSIONS: Our findings offer a practical framework for designing and implementing novel personalized anti-cancer strategies by targeting specific bacterial DnaKs in patients with poor response to chemotherapy, underscoring the potential for microbiome-based personalized cancer therapies.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Mice , Humans , Cisplatin , Tumor Suppressor Protein p53 , Fluorouracil , Bacteria
5.
Appl Environ Microbiol ; 89(12): e0030823, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38009923

ABSTRACT

IMPORTANCE: While most plant-pathogenic Streptomyces species cause scab disease on a variety of plant hosts, Streptomyces ipomoeae is the sole causative agent of soil rot disease of sweet potato and closely related plant species. Here, genome sequencing of virulent and avirulent S. ipomoeae strains coupled with comparative genomic analyses has identified genome content and organization features unique to this streptomycete plant pathogen. The results here will enable future research into the mechanisms used by S. ipomoeae to cause disease and to persist in its niche environment.


Subject(s)
Solanum tuberosum , Streptomyces , Genomics , Streptomyces/genetics , Base Sequence , Plant Diseases
7.
PLoS Genet ; 12(12): e1006490, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27973599

ABSTRACT

Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved in the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic understanding for the ability of diatoms to remain metabolically poised to respond quickly to Fe input and revealing strategies underlying their ecological success.


Subject(s)
Diatoms/metabolism , Iron/metabolism , Photoperiod , Transcriptome/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Division/drug effects , Cell Division/genetics , Chloroplasts/genetics , Diatoms/drug effects , Diatoms/growth & development , Gene Expression , Iron/pharmacology , Metabolic Networks and Pathways/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Protein Biosynthesis/drug effects
8.
Genome Res ; 23(5): 867-77, 2013 May.
Article in English | MEDLINE | ID: mdl-23564253

ABSTRACT

Although biofilms have been shown to be reservoirs of pathogens, our knowledge of the microbial diversity in biofilms within critical areas, such as health care facilities, is limited. Available methods for pathogen identification and strain typing have some inherent restrictions. In particular, culturing will yield only a fraction of the species present, PCR of virulence or marker genes is mainly focused on a handful of known species, and shotgun metagenomics is limited in the ability to detect strain variations. In this study, we present a single-cell genome sequencing approach to address these limitations and demonstrate it by specifically targeting bacterial cells within a complex biofilm from a hospital bathroom sink drain. A newly developed, automated platform was used to generate genomic DNA by the multiple displacement amplification (MDA) technique from hundreds of single cells in parallel. MDA reactions were screened and classified by 16S rRNA gene PCR sequence, which revealed a broad range of bacteria covering 25 different genera representing environmental species, human commensals, and opportunistic human pathogens. Here we focus on the recovery of a nearly complete genome representing a novel strain of the periodontal pathogen Porphyromonas gingivalis (P. gingivalis JCVI SC001) using the single-cell assembly tool SPAdes. Single-cell genomics is becoming an accepted method to capture novel genomes, primarily in the marine and soil environments. Here we show for the first time that it also enables comparative genomic analysis of strain variation in a pathogen captured from complex biofilm samples in a healthcare facility.


Subject(s)
Biofilms , High-Throughput Nucleotide Sequencing , Porphyromonas gingivalis/genetics , Single-Cell Analysis , Bacteroidaceae Infections/genetics , Bacteroidaceae Infections/microbiology , Cross Infection/genetics , Cross Infection/microbiology , Genome, Bacterial , Humans , Porphyromonas gingivalis/pathogenicity
9.
Appl Environ Microbiol ; 82(7): 2146-2155, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26826232

ABSTRACT

Streptomyces spp. are highly differentiated actinomycetes with large, linear chromosomes that encode an arsenal of biologically active molecules and catabolic enzymes. Members of this genus are well equipped for life in nutrient-limited environments and are common soil saprophytes. Out of the hundreds of species in the genus Streptomyces, a small group has evolved the ability to infect plants. The recent availability of Streptomyces genome sequences, including four genomes of pathogenic species, provided an opportunity to characterize the gene content specific to these pathogens and to study phylogenetic relationships among them. Genome sequencing, comparative genomics, and phylogenetic analysis enabled us to discriminate pathogenic from saprophytic Streptomyces strains; moreover, we calculated that the pathogen-specific genome contains 4,662 orthologs. Phylogenetic reconstruction suggested that Streptomyces scabies and S. ipomoeae share an ancestor but that their biosynthetic clusters encoding the required virulence factor thaxtomin have diverged. In contrast, S. turgidiscabies and S. acidiscabies, two relatively unrelated pathogens, possess highly similar thaxtomin biosynthesis clusters, which suggests that the acquisition of these genes was through lateral gene transfer.


Subject(s)
Evolution, Molecular , Genome, Bacterial , Phylogeny , Plant Diseases/genetics , Plant Diseases/microbiology , Streptomyces/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plants/microbiology , Streptomyces/classification , Streptomyces/metabolism
10.
Nature ; 465(7298): 617-21, 2010 Jun 03.
Article in English | MEDLINE | ID: mdl-20520714

ABSTRACT

Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.


Subject(s)
Algal Proteins/genetics , Biological Evolution , Genome/genetics , Phaeophyceae/cytology , Phaeophyceae/genetics , Animals , Eukaryota , Evolution, Molecular , Molecular Sequence Data , Phaeophyceae/metabolism , Phylogeny , Pigments, Biological/biosynthesis , Signal Transduction/genetics
11.
Proc Natl Acad Sci U S A ; 110(26): E2390-9, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23754396

ABSTRACT

The "dark matter of life" describes microbes and even entire divisions of bacterial phyla that have evaded cultivation and have yet to be sequenced. We present a genome from the globally distributed but elusive candidate phylum TM6 and uncover its metabolic potential. TM6 was detected in a biofilm from a sink drain within a hospital restroom by analyzing cells using a highly automated single-cell genomics platform. We developed an approach for increasing throughput and effectively improving the likelihood of sampling rare events based on forming small random pools of single-flow-sorted cells, amplifying their DNA by multiple displacement amplification and sequencing all cells in the pool, creating a "mini-metagenome." A recently developed single-cell assembler, SPAdes, in combination with contig binning methods, allowed the reconstruction of genomes from these mini-metagenomes. A total of 1.07 Mb was recovered in seven contigs for this member of TM6 (JCVI TM6SC1), estimated to represent 90% of its genome. High nucleotide identity between a total of three TM6 genome drafts generated from pools that were independently captured, amplified, and assembled provided strong confirmation of a correct genomic sequence. TM6 is likely a Gram-negative organism and possibly a symbiont of an unknown host (nonfree living) in part based on its small genome, low-GC content, and lack of biosynthesis pathways for most amino acids and vitamins. Phylogenomic analysis of conserved single-copy genes confirms that TM6SC1 is a deeply branching phylum.


Subject(s)
Biofilms , Hospitals , Metagenome , Sanitary Engineering , Water Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , Evolution, Molecular , Genome, Bacterial , Humans , Metabolic Networks and Pathways , Metagenomics/methods , Molecular Sequence Data , Phylogeny , Water Supply
12.
Proc Natl Acad Sci U S A ; 110(49): 19802-7, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24248345

ABSTRACT

It has recently been established that synthesis of double-stranded cDNA can be done from a single cell for use in DNA sequencing. Global gene expression can be quantified from the number of reads mapping to each gene, and mutations and mRNA splicing variants determined from the sequence reads. Here we demonstrate that this method of transcriptomic analysis can be done using the extremely low levels of mRNA in a single nucleus, isolated from a mouse neural progenitor cell line and from dissected hippocampal tissue. This method is characterized by excellent coverage and technical reproducibility. On average, more than 16,000 of the 24,057 mouse protein-coding genes were detected from single nuclei, and the amount of gene-expression variation was similar when measured between single nuclei and single cells. Several major advantages of the method exist: first, nuclei, compared with whole cells, have the advantage of being easily isolated from complex tissues and organs, such as those in the CNS. Second, the method can be widely applied to eukaryotic species, including those of different kingdoms. The method also provides insight into regulatory mechanisms specific to the nucleus. Finally, the method enables dissection of regulatory events at the single-cell level; pooling of 10 nuclei or 10 cells obscures some of the variability measured in transcript levels, implying that single nuclei and cells will be extremely useful in revealing the physiological state and interconnectedness of gene regulation in a manner that avoids the masking inherent to conventional transcriptomics using bulk cells or tissues.


Subject(s)
Cell Nucleus/genetics , Dentate Gyrus/cytology , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Neural Stem Cells/metabolism , Animals , Cell Nucleus/metabolism , Embryonic Stem Cells , Flow Cytometry , Mice , Micromanipulation , Microscopy, Fluorescence
13.
Nature ; 456(7219): 239-44, 2008 Nov 13.
Article in English | MEDLINE | ID: mdl-18923393

ABSTRACT

Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one-fifth of the primary productivity on Earth. The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology. Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes ( approximately 40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.


Subject(s)
Diatoms/genetics , Evolution, Molecular , Genome/genetics , DNA, Algal/analysis , Genes, Bacterial/genetics , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Signal Transduction
14.
Curr Opin Insect Sci ; 61: 101135, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37926187

ABSTRACT

Insect symbionts can alter their host phenotype and their effects can range from beneficial to pathogenic. Moreover, many insects exhibit co-infections, making their study more challenging. Less than 1% of insect species have high-quality referenced genomes available and fewer still also have their symbionts sequenced. Two methods are commonly used to sequence symbionts: whole-genome sequencing to concomitantly capture the host and bacterial genomes, or isolation of the symbiont's genome before sequencing. These methods are limited when dealing with rare or poorly characterized symbionts. Long-read technology is an important tool to generate high-quality genomes as they can overcome high levels of heterozygosity, repeat content, and transposable elements that confound short-read methods. Oxford Nanopore (ONT) adaptive sampling allows a sequencing instrument to select or reject sequences in real time. We describe a method based on ONT adaptive sampling (subtractive) approach that readily permitted the sequencing of the complete genomes of mitochondria, Buchnera and its plasmids (pLeu, pTrp), and Wolbachia genomes in two aphid species, Aphis glycines and Pentalonia nigronervosa. Adaptive sampling is able to retrieve organelles such as mitochondria and symbionts that have high representation in their hosts such as Buchnera and Wolbachia, but is less successful at retrieving symbionts in low concentrations.


Subject(s)
Buchnera , Nanopores , Animals , Buchnera/genetics , DNA Transposable Elements , Insecta/genetics
15.
New Phytol ; 198(2): 398-407, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23488966

ABSTRACT

To increase knowledge of transcript diversity for the giant kelp, Macrocystis pyrifera, and assess gene expression across naturally occurring depth gradients in light, temperature and nutrients, we sequenced four cDNA libraries created from blades collected at the sea surface and at 18 m depth during the winter and summer. Comparative genomics cluster analyses revealed novel gene families (clusters) in existing brown alga expressed sequence tag data compared with other related algal groups, a pattern also seen with the addition of M. pyrifera sequences. Assembly of 228 Mbp of sequence generated c. 9000 isotigs and c. 12,000 open reading frames. Annotations were assigned using families of hidden Markov models for c. 11% of open reading frames; M. pyrifera had highest similarity to other members of the Phaeophyceae, namely Ectocarpus siliculosus and Laminaria digitata. Quantitative polymerase chain reaction of transcript targets verified depth-related differences in gene expression; stress response and light-harvesting transcripts, especially members of the LI818 (also known as LHCSR) family, showed high expression in the surface compared with 18 m depth, while some nitrogen acquisition transcripts (e.g. nitrite reductase) were upregulated at depth compared with the surface, supporting a conceptual biological model of depth-dependent physiology.


Subject(s)
Gene Expression Profiling , Macrocystis/genetics , Macrocystis/metabolism , Oceans and Seas , Seasons , Cluster Analysis , Expressed Sequence Tags , Gene Library , Light , Macrocystis/physiology , Macrocystis/radiation effects , Molecular Sequence Annotation , Open Reading Frames/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, DNA , Statistics as Topic , Temperature
16.
Nat Med ; 28(3): 545-556, 2022 03.
Article in English | MEDLINE | ID: mdl-35228752

ABSTRACT

Ample evidence indicates that the gut microbiome is a tumor-extrinsic factor associated with antitumor response to anti-programmed cell death protein-1 (PD-1) therapy, but inconsistencies exist between published microbial signatures associated with clinical outcomes. To resolve this, we evaluated a new melanoma cohort, along with four published datasets. Time-to-event analysis showed that baseline microbiota composition was optimally associated with clinical outcome at approximately 1 year after initiation of treatment. Meta-analysis and other bioinformatic analyses of the combined data show that bacteria associated with favorable response are confined within the Actinobacteria phylum and the Lachnospiraceae/Ruminococcaceae families of Firmicutes. Conversely, Gram-negative bacteria were associated with an inflammatory host intestinal gene signature, increased blood neutrophil-to-lymphocyte ratio, and unfavorable outcome. Two microbial signatures, enriched for Lachnospiraceae spp. and Streptococcaceae spp., were associated with favorable and unfavorable clinical response, respectively, and with distinct immune-related adverse effects. Despite between-cohort heterogeneity, optimized all-minus-one supervised learning algorithms trained on batch-corrected microbiome data consistently predicted outcomes to programmed cell death protein-1 therapy in all cohorts. Gut microbial communities (microbiotypes) with nonuniform geographical distribution were associated with favorable and unfavorable outcomes, contributing to discrepancies between cohorts. Our findings shed new light on the complex interaction between the gut microbiome and response to cancer immunotherapy, providing a roadmap for future studies.


Subject(s)
Gastrointestinal Microbiome , Melanoma , Microbiota , Bacteria/genetics , Gastrointestinal Microbiome/genetics , Humans , Immunotherapy/adverse effects , Melanoma/drug therapy
17.
BMC Genomics ; 12: 294, 2011 Jun 06.
Article in English | MEDLINE | ID: mdl-21645368

ABSTRACT

BACKGROUND: Vibrio parahaemolyticus is a common cause of foodborne disease. Beginning in 1996, a more virulent strain having serotype O3:K6 caused major outbreaks in India and other parts of the world, resulting in the emergence of a pandemic. Other serovariants of this strain emerged during its dissemination and together with the original O3:K6 were termed strains of the pandemic clone. Two genomes, one of this virulent strain and one pre-pandemic strain have been sequenced. We sequenced four additional genomes of V. parahaemolyticus in this study that were isolated from different geographical regions and time points. Comparative genomic analyses of six strains of V. parahaemolyticus isolated from Asia and Peru were performed in order to advance knowledge concerning the evolution of V. parahaemolyticus; specifically, the genetic changes contributing to serotype conversion and virulence. Two pre-pandemic strains and three pandemic strains, isolated from different geographical regions, were serotype O3:K6 and either toxin profiles (tdh+, trh-) or (tdh-, trh+). The sixth pandemic strain sequenced in this study was serotype O4:K68. RESULTS: Genomic analyses revealed that the trh+ and tdh+ strains had different types of pathogenicity islands and mobile elements as well as major structural differences between the tdh pathogenicity islands of the pre-pandemic and pandemic strains. In addition, the results of single nucleotide polymorphism (SNP) analysis showed that 94% of the SNPs between O3:K6 and O4:K68 pandemic isolates were within a 141 kb region surrounding the O- and K-antigen-encoding gene clusters. The "core" genes of V. parahaemolyticus were also compared to those of V. cholerae and V. vulnificus, in order to delineate differences between these three pathogenic species. Approximately one-half (49-59%) of each species' core genes were conserved in all three species, and 14-24% of the core genes were species-specific and in different functional categories. CONCLUSIONS: Our data support the idea that the pandemic strains are closely related and that recent South American outbreaks of foodborne disease caused by V. parahaemolyticus are closely linked to outbreaks in India. Serotype conversion from O3:K6 to O4:K68 was likely due to a recombination event involving a region much larger than the O-antigen- and K-antigen-encoding gene clusters. Major differences between pathogenicity islands and mobile elements are also likely driving the evolution of V. parahaemolyticus. In addition, our analyses categorized genes that may be useful in differentiating pathogenic Vibrios at the species level.


Subject(s)
Genomics/methods , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/pathogenicity , Evolution, Molecular , Genetic Loci/genetics , Genetic Variation , Genome, Bacterial/genetics , Genomic Islands/genetics , Integrons/genetics , Pandemics , Prophages/genetics , Vibrio parahaemolyticus/classification , Vibrio parahaemolyticus/virology
18.
Plasmid ; 65(2): 118-24, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21087627

ABSTRACT

Streptomyces turgidiscabies Car8 is an actinobacterium that causes the economically important disease potato scab. Pathogenesis in this species is associated with a mobile pathogenicity island (PAISt) that site specifically inserts into the bacA gene in Streptomyces spp. Here we provide the 674,223 bp sequence of PAISt, which consists of two non-overlapping modules of 105,364 and 568,859 bp. These modules are delimited by three copies of an 8 bp palindromic sequence (TTCATGAA), that also is the integration site (att) of the element. Putative tyrosine recombinase (IntSt) and excisionase (XisSt) proteins are encoded just upstream of att-R. PAISt has regions of synteny to pathogenic, symbiotic and saprophytic actinomycetes. The 105,364 bp PAISt module is identical to a genomic island in Streptomyces scabies 87-22, while the 568,859 bp module contains only a short region of synteny to that genome. However, both modules contain previously characterized and candidate virulence genes.


Subject(s)
Genomic Islands , Streptomyces/genetics , Streptomyces/pathogenicity , Virulence/genetics , Base Sequence , Computational Biology , DNA Nucleotidyltransferases/metabolism , Gene Order , Genes, Bacterial/genetics , Integrases/metabolism , Molecular Sequence Annotation , Molecular Sequence Data , Recombination, Genetic , Solanum tuberosum/microbiology , Streptomyces/enzymology , Synteny/genetics , Tyrosine/metabolism , Viral Proteins/metabolism
19.
PLoS Genet ; 4(7): e1000141, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18654632

ABSTRACT

We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels.


Subject(s)
Genome, Bacterial , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Nitrogen Fixation , Sequence Analysis, DNA , Animals , Animals, Outbred Strains , Base Sequence , Chromosomes, Bacterial/chemistry , Female , Klebsiella pneumoniae/metabolism , Mice , Mice, Inbred C3H , Molecular Sequence Data , Virulence
20.
PLoS Genet ; 4(4): e1000046, 2008 Apr 11.
Article in English | MEDLINE | ID: mdl-18404212

ABSTRACT

We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated "gene dumps" and, perhaps, simultaneously, as "gene factories".


Subject(s)
Aspergillus fumigatus/genetics , Genomic Islands , Allergens/genetics , Aspergillus/classification , Aspergillus/genetics , Aspergillus/physiology , Aspergillus fumigatus/classification , Aspergillus fumigatus/pathogenicity , Aspergillus fumigatus/physiology , Chromosomes, Fungal/genetics , Eurotiales/classification , Eurotiales/genetics , Eurotiales/physiology , Evolution, Molecular , Fungal Proteins/genetics , Fungal Proteins/immunology , Genome, Fungal , Humans , Phylogeny , Species Specificity , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL