Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Gastroenterology ; 160(7): 2423-2434.e5, 2021 06.
Article in English | MEDLINE | ID: mdl-33662387

ABSTRACT

BACKGROUND & AIMS: IgA exerts its primary function at mucosal surfaces, where it binds microbial antigens to regulate bacterial growth and epithelial attachment. One third of individuals with IgA deficiency (IgAD) suffers from recurrent mucosal infections, possibly related to an altered microbiota. We aimed to delineate the impact of IgAD and the IgA-autoantibody status on the composition and functional capacity of the gut microbiota. METHODS: We performed a paired, lifestyle-balanced analysis of the effect of IgA on the gut microbiota composition and functionality based on fecal samples from individuals with IgAD and IgA-sufficient household members (n = 100), involving quantitative shotgun metagenomics, species-centric functional annotation of gut bacteria, and strain-level analyses. We supplemented the data set with 32 individuals with IgAD and examined the influence of IgA-autoantibody status on the composition and functionality of the gut microbiota. RESULTS: The gut microbiota of individuals with IgAD exhibited decreased richness and diversity and was enriched for bacterial species encoding pathogen-related functions including multidrug and antimicrobial peptide resistance, virulence factors, and type III and VI secretion systems. These functional changes were largely attributed to Escherichia coli but were independent of E coli strain variations and most prominent in individuals with IgAD with IgA-specific autoreactive antibodies. CONCLUSIONS: The microbiota of individuals with IgAD is enriched for species holding increased proinflammatory potential, thereby potentially decreasing the resistance to gut barrier-perturbing events. This phenotype is especially pronounced in individuals with IgAD with IgA-specific autoreactive antibodies, thus warranting a screening for IgA-specific autoreactive antibodies in IgAD to identify patients with IgAD with increased risk for gastrointestinal implications.


Subject(s)
Autoantibodies/metabolism , Gastrointestinal Microbiome/immunology , IgA Deficiency/immunology , IgA Deficiency/microbiology , Immunoglobulin A/metabolism , Adult , Aged , Case-Control Studies , Feces/microbiology , Female , Humans , Male , Middle Aged
2.
Scand J Immunol ; 95(5): e13148, 2022 May.
Article in English | MEDLINE | ID: mdl-35152475

ABSTRACT

The use of antibiotics as well as changes in the gut microbiota have been linked to development of food allergy in childhood. It remains unknown whether administration of a single clinically relevant antibiotic directly promotes food allergy development when administrated during the sensitisation phase in an experimental animal model. We investigated whether the antibiotic amoxicillin affected gut microbiota composition, development of cow's milk allergy (CMA) and frequencies of allergic effector cells and regulatory T cells in the intestine. Brown Norway rats were given daily oral gavages of amoxicillin for six weeks and whey protein concentrate (WPC) with or without cholera toxin three times per week for the last five weeks. Microbiota composition in faeces and small intestine was analysed by 16S rRNA sequencing. The development of CMA was assessed by WPC-specific IgE in serum, ear swelling response to WPC and body hypothermia following oral gavage of WPC. Allergic effector cells were analysed by histology, and frequencies of regulatory and activated T cells were analysed by flow cytometry. Amoxicillin administration reduced faecal microbiota diversity, reduced the relative abundance of Firmicutes and increased the abundance of Bacteroidetes and Proteobacteria. Despite these effects, amoxicillin did not affect the development of CMA, nor the frequencies of allergic effector cells or regulatory T cells. Thus, amoxicillin does not carry a direct risk for food allergy development when administrated in an experimental model of allergic sensitisation to WPC via the gut. This finding suggests that confounding factors may better explain the epidemiological link between antibiotic use and food allergy.


Subject(s)
Food Hypersensitivity , Milk Hypersensitivity , Amoxicillin/adverse effects , Animals , Anti-Bacterial Agents/adverse effects , Cattle , Female , RNA, Ribosomal, 16S/genetics , Rats
3.
Appl Environ Microbiol ; 87(11)2021 05 11.
Article in English | MEDLINE | ID: mdl-33741632

ABSTRACT

Assessing "dysbiosis" in intestinal microbial communities is increasingly considered a routine analysis in microbiota studies, and it has added relevant information to the prediction and characterization of diseases and other adverse conditions. However, dysbiosis is not a well-defined condition. A variety of different dysbiosis indexes have been suggested and applied, but their underlying methodologies, as well as the cohorts and conditions for which they have been developed, differ considerably. To date, no comprehensive overview and comparison of all the different methodologies and applications of such indexes is available. Here, we list all types of dysbiosis indexes identified in the literature, introduce their methodology, group them into categories, and discuss their potential descriptive and clinical applications as well as their limitations. Thus, our focus is not on the implications of dysbiosis for disease but on the methodological approaches available to determine and quantify this condition.


Subject(s)
Diagnostic Tests, Routine/methods , Dysbiosis/diagnosis , Gastrointestinal Microbiome/physiology , Dysbiosis/microbiology , Humans
4.
Scand J Gastroenterol ; 55(5): 626-630, 2020 May.
Article in English | MEDLINE | ID: mdl-32324085

ABSTRACT

Clostridioides difficile infection may be complicated by co-infection with other pathogens. We here describe the successful use of faecal microbiota transplantation to eradicate concomitant C. difficile and extensively drug-resistant (XDR) KPC-producing Klebsiella pneumoniae. Donor microbiota efficiently engrafted in the patient, and a donor-like microbial assemblage persisted in the patient during six months follow-up. The report explores the potential for the donor microbiota to eradicate and replace multi-resistant microorganisms.


Subject(s)
Clostridium Infections/therapy , Coinfection/therapy , Fecal Microbiota Transplantation , Klebsiella Infections/therapy , Aged , Anti-Bacterial Agents/therapeutic use , Clostridioides difficile/isolation & purification , Clostridium Infections/microbiology , Coinfection/microbiology , Drug Resistance, Multiple, Bacterial , Female , Gastrointestinal Microbiome , Humans , Klebsiella Infections/microbiology , Klebsiella pneumoniae/isolation & purification
5.
Gut ; 68(1): 83-93, 2019 01.
Article in English | MEDLINE | ID: mdl-29097438

ABSTRACT

OBJECTIVE: To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. DESIGN: 60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. RESULTS: 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. CONCLUSION: Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation. TRIAL REGISTRATION NUMBER: NCT01731366; Results.


Subject(s)
Gastrointestinal Microbiome , Inflammation/blood , Weight Loss , Whole Grains , Adult , Aged , Blood Glucose/metabolism , Cross-Over Studies , Denmark , Diet , Energy Intake , Feces/microbiology , Female , Humans , Inflammation/diet therapy , Insulin Resistance , Interleukin-6/blood , Lipids/blood , Male , Metabolomics , Middle Aged
6.
Transfusion ; 59(9): 2776-2782, 2019 09.
Article in English | MEDLINE | ID: mdl-31241182

ABSTRACT

Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridioides difficile infection and is potentially beneficial in other microbiota-related disorders. The provision of FMT in routine clinical practice requires an extensive infrastructure that is reliant on voluntary donors. Alongside an increasing demand for FMT, the logistic barriers of a large-scale donor-dependent operation and the difficulties among health authorities to regulate FMT limit the dissemination of sustainable FMT services. Blood centers are large organizations that handle a multitude of donor-dependent operations on a daily basis. Blood and feces share many of the same dependencies, and feces may present a new opportunity for the blood services to handle. In this paper, we describe how an FMT service may be established and embedded within the blood service infrastructure, and we explain the benefits of using blood donors as feces donors. We further explore the current indications of FMT, the challenges related to the lack of legislation, and the future perspectives for blood banks to meet a new and increasing demand.


Subject(s)
Blood Banks/organization & administration , Blood Banks/trends , Fecal Microbiota Transplantation , Feces , Blood Banks/legislation & jurisprudence , Blood Donors , Donor Selection/methods , Donor Selection/standards , Donor Selection/trends , Fecal Microbiota Transplantation/methods , Fecal Microbiota Transplantation/standards , Fecal Microbiota Transplantation/statistics & numerical data , Fecal Microbiota Transplantation/trends , Health Services Needs and Demand , Humans , Legislation, Medical/standards , Practice Guidelines as Topic/standards , Public Sector , Risk Assessment , Blood Banking/methods
7.
BMC Microbiol ; 17(1): 175, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28818050

ABSTRACT

BACKGROUND: Probiotics are increasingly applied to prevent and treat a range of infectious, immune related and gastrointestinal diseases. Despite this, the mechanisms behind the putative effects of probiotics are poorly understood. One of the suggested modes of probiotic action is modulation of the endogenous gut microbiota, however probiotic intervention studies in adults have failed to show significant effects on gut microbiota composition. The gut microbiota of young children is known to be unstable and more responsive to external factors than that of adults. Therefore, potential effects of probiotic intervention on gut microbiota may be easier detectable in early life. We thus investigated the effects of a 6 month placebo-controlled probiotic intervention with Bifidobacterium animalis subsp. lactis (BB-12®) and Lactobacillus rhamnosus (LGG®) on gut microbiota composition and diversity in more than 200 Danish infants (N = 290 enrolled; N = 201 all samples analyzed), as assessed by 16S rRNA amplicon sequencing. Further, we evaluated probiotic presence and proliferation by use of specific quantitative polymerase chain reaction (qPCR). RESULTS: Probiotic administration did not significantly alter gut microbiota community structure or diversity as compared to placebo. The probiotic strains were detected in 91.3% of the fecal samples from children receiving probiotics and in 1% of the placebo treated children. Baseline gut microbiota was not found to predict the ability of probiotics to establish in the gut after the 6 month intervention. Within the probiotics group, proliferation of the strains LGG® and BB-12® in the gut was detected in 44.7% and 83.5% of the participants, respectively. A sub-analysis of the gut microbiota including only individuals with detected growth of the probiotics LGG® or BB-12® and comparing these to placebo revealed no differences in community structure or diversity. CONCLUSION: Six months of probiotic administration during early life did not change gut microbiota community structure or diversity, despite active proliferation of the administered probiotic strains. Therefore, alteration of the healthy infant gut microbiota is not likely to be a prominent mechanism by which these specific probiotics works to exert beneficial effects on host health. TRIAL REGISTRATION: NCT02180581 . Registered 30 June 2014.


Subject(s)
Gastrointestinal Microbiome , Probiotics/administration & dosage , Probiotics/classification , Bifidobacterium animalis/genetics , Biodiversity , DNA, Bacterial , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Humans , Infant , Lacticaseibacillus rhamnosus/genetics , Male , Placebo Effect , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Time Factors
8.
BMC Microbiol ; 15: 154, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26231752

ABSTRACT

BACKGROUND: Evidence suggests that early life infections, presence of older siblings and furred pets in the household affect the risk of developing allergic diseases through altered microbial exposure. Recently, low gut microbial diversity during infancy has also been linked with later development of allergies. We investigated whether presence of older siblings, furred pets and early life infections affected gut microbial communities at 9 and 18 months of age and whether these differences were associated with the cumulative prevalence of atopic symptoms of eczema and asthmatic bronchitis at 3 years of age. Bacterial compositions and diversity indices were determined in fecal samples collected from 114 infants in the SKOT I cohort at age 9 and 18 months by 16S rRNA gene sequencing. These were compared to the presence of older siblings, furred pets and early life infections and the cumulative prevalence of diagnosed asthmatic bronchitis and self-reported eczema at 3 years of age. RESULTS: The number of older siblings correlated positively with bacterial diversity (p = 0.030), diversity of the phyla Firmicutes (p = 0.013) and Bacteroidetes (p = 0.004) and bacterial richness (p = 0.006) at 18 months. Further, having older siblings was associated with increased relative abundance of several bacterial taxa at both 9 and 18 months of age. Compared to the effect of having siblings, presence of household furred pets and early life infections had less pronounced effects on the gut microbiota. Gut microbiota characteristics were not significantly associated with cumulative occurrence of eczema and asthmatic bronchitis during the first 3 years of life. CONCLUSIONS: Presence of older siblings is associated with increased gut microbial diversity and richness during early childhood, which could contribute to the substantiation of the hygiene hypothesis. However, no associations were found between gut microbiota and atopic symptoms of eczema and asthmatic bronchitis during early childhood and thus further studies are required to elucidate whether sibling-associated gut microbial changes influence development of allergies later in childhood.


Subject(s)
Asthma/epidemiology , Bacteria/classification , Bacteria/genetics , Eczema/epidemiology , Gastrointestinal Microbiome , Microbiota , Siblings , Child, Preschool , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Feces/microbiology , Humans , Infant , Molecular Sequence Data , Phylogeny , Prevalence , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
9.
Appl Environ Microbiol ; 80(9): 2889-900, 2014 May.
Article in English | MEDLINE | ID: mdl-24584251

ABSTRACT

Fecal samples were obtained from a cohort of 330 healthy Danish infants at 9, 18, and 36 months after birth, enabling characterization of interbacterial relationships by use of quantitative PCR targeting 31 selected bacterial 16S rRNA gene targets representing different phylogenetic levels. Nutritional parameters and measures of growth and body composition were determined and investigated in relation to the observed development in microbiota composition. We found that significant changes in the gut microbiota occurred, particularly from age 9 to 18 months, when cessation of breastfeeding and introduction of a complementary feeding induce replacement of a microbiota characterized by lactobacilli, bifidobacteria, and Enterobacteriaceae with a microbiota dominated by Clostridium spp. and Bacteroides spp. Classification of samples by a proxy enterotype based on the relative levels of Bacteroides spp. and Prevotella spp. showed that enterotype establishment occurs between 9 and 36 months. Thirty percent of the individuals shifted enterotype between 18 and 36 months. The composition of the microbiota was most pronouncedly influenced by the time of cessation of breastfeeding. From 9 to 18 months, a positive correlation was observed between the increase in body mass index and the increase of the short-chain-fatty-acid-producing clostridia, the Clostridum leptum group, and Eubacterium hallii. Considering previously established positive associations between rapid infant weight gain, early breastfeeding discontinuation, and later-life obesity, the corresponding microbial findings seen here warrant attention.


Subject(s)
Bacteria/isolation & purification , Intestines/microbiology , Microbiota , Bacteria/classification , Bacteria/genetics , Breast Feeding , Child, Preschool , Cohort Studies , DNA, Bacterial/genetics , Denmark , Feces/microbiology , Female , Humans , Infant , Male , RNA, Ribosomal, 16S/genetics
10.
Sci Rep ; 14(1): 17542, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39080343

ABSTRACT

The gut microbiome is a significant factor in the pathophysiology of ulcerative colitis (UC), prompting investigations into the use of probiotic therapies to counter gastrointestinal inflammation. However, while much attention has been given to the therapeutic potential of microbes at the species and strain level, the discovery and application of their metabolic products may offer more precise and controlled solutions in battling disease. In this work, we examined the therapeutic potential of indole lactic acid (ILA) to alleviate inflammation in a murine model of colitis. A previously constructed ILA-producing Escherichia coli Nissle 1917 strain (EcN aldh) and its isogenic non-ILA producing counterpart (EcN) were studied in a murine model of Dextran Sodium Sulfate (DSS) induced colitis. The colitic animals suffered from severe colitic symptoms, with no differentiation between the groups in body weight loss and disease activity index. However, three days after cessation of DSS treatment the EcN aldh-treated mice showed signs of reduced intestinal inflammation, as manifested by lower concentrations of fecal lipocalin-2. Additionally, expression analysis of the inflamed tissue revealed distinct effects of the EcN aldh strain on proteins associated with intestinal health, such as TFF3, occludin and IL-1ß expression. These results show no impact of EcN or EcN aldh on acute DSS-induced colitis, but suggest that in particular EcN aldh may assist recovery from intestinal inflammation.


Subject(s)
Colitis , Dextran Sulfate , Disease Models, Animal , Escherichia coli , Indoles , Animals , Escherichia coli/metabolism , Mice , Colitis/chemically induced , Colitis/metabolism , Colitis/microbiology , Colitis/pathology , Dextran Sulfate/toxicity , Indoles/pharmacology , Probiotics/administration & dosage , Lipocalin-2/metabolism , Lipocalin-2/genetics , Gastrointestinal Microbiome , Mice, Inbred C57BL , Feces/microbiology
11.
Environ Pollut ; 334: 122179, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37454717

ABSTRACT

Perfluorooctane sulfonic acid (PFOS) is a manmade legacy compound belonging to the group of persistent per- and polyfluorinated substances (PFAS). While many adverse health effects of PFOS have been identified, knowledge about its effect on the intestinal microbiota is scarce. The microbial community inhabiting the gut of mammals plays an important role in health, for instance by affecting the uptake, excretion, and bioavailability of some xenobiotic toxicants. Here, we investigated (i) the effect of vancomycin-mediated microbiota modulation on the uptake of PFOS in adult Sprague-Dawley rats, and (ii) the effects of PFOS exposure on the rat microbiota composition. Four groups of twelve rats were exposed daily for 7 days with either 3 mg/kg PFOS plus 8 mg/kg vancomycin, only PFOS, only vancomycin, or a corn oil control. Vancomycin-induced modulation of the gut microbiota composition did not affect uptake of branched and linear PFOS over a period of 7 days, measured in serum samples. 16S rRNA amplicon sequencing of faecal and intestinal samples revealed that vancomycin treatment lowered microbial alpha-diversity, while PFOS increased the microbial diversity in vancomycin-treated as well as in non-antibiotic treated animals, possibly because an observed decrease in the Enterobacteriaceae abundance allows other microbial species to propagate. Colonic short-chain fatty acids were significantly lower in vancomycin-treated animals but remained unaffected by PFOS. Our results suggest that PFOS exposure may disturb the intestinal microbiota, but that antibiotic-induced modulation of the intestinal ecosystem does not affect systemic uptake of PFOS in rats.


Subject(s)
Fluorocarbons , Gastrointestinal Microbiome , Microbiota , Rats , Animals , Anti-Bacterial Agents/toxicity , Vancomycin/toxicity , RNA, Ribosomal, 16S/genetics , Rats, Sprague-Dawley , Fluorocarbons/toxicity , Mammals/genetics
12.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-37863838

ABSTRACT

For patients with ulcerative colitis (UC), administration of the probiotic E. coli Nissle (EcN) holds promise for alleviation of disease symptoms. The mechanisms are unclear, but it has been hypothesised that a capacity of the probiotic to outcompete potentially detrimental UC-associated E. coli strains plays an important role. However, this could previously not be confirmed in a mouse model of competition between EcN and two UC-associated strains, as reported by Petersen et al. 2011. In the present study, we re-evaluated the idea, hypothesising that delivery of EcN by a micro device dosing system (microcontainers), designed for delivery into the intestinal mucus, could support colonisation and confer a competition advantage compared to classical oral dosing. Six groups of mice were pre-colonised with one of two UC-associated E. coli strains followed by oral delivery of EcN, either in capsules containing microcontainers with freeze-dried EcN powder, capsules containing freeze-dried EcN powder, or as a fresh sucrose suspension. Co-colonisation between the probiotic and the disease-associated strains was observed regardless of dosing method, and no competition advantages linked to microcontainer delivery were identified within this setup. Other approaches are thus needed if the competitive capacity of EcN in the gut should be improved.


Subject(s)
Colitis, Ulcerative , Probiotics , Humans , Mice , Animals , Colitis, Ulcerative/chemically induced , Escherichia coli , Powders
13.
Microlife ; 3: uqac006, 2022.
Article in English | MEDLINE | ID: mdl-37223362

ABSTRACT

Human Milk Oligosaccharides (HMOs) are glycans with prebiotic properties known to drive microbial selection in the infant gut, which in turn influences immune development and future health. Bifidobacteria are specialized in HMO degradation and frequently dominate the gut microbiota of breastfed infants. However, some species of Bacteroidaceae also degrade HMOs, which may prompt selection also of these species in the gut microbiota. To investigate to what extent specific HMOs affect the abundance of naturally occurring Bacteroidaceae species in a complex mammalian gut environment, we conducted a study in 40 female NMRI mice administered three structurally different HMOs, namely 6'sialyllactose (6'SL, n = 8), 3-fucosyllactose (3FL, n = 16), and Lacto-N-Tetraose (LNT, n = 8), through drinking water (5%). Compared to a control group receiving unsupplemented drinking water (n = 8), supplementation with each of the HMOs significantly increased both the absolute and relative abundance of Bacteroidaceae species in faecal samples and affected the overall microbial composition analyzed by 16s rRNA amplicon sequencing. The compositional differences were mainly attributed to an increase in the relative abundance of the genus Phocaeicola (formerly Bacteroides) and a concomitant decrease of the genus Lacrimispora (formerly Clostridium XIVa cluster). During a 1-week washout period performed specifically for the 3FL group, this effect was reversed. Short-chain fatty acid analysis of faecal water revealed a decrease in acetate, butyrate and isobutyrate levels in animals supplemented with 3FL, which may reflect the observed decrease in the Lacrimispora genus. This study highlights HMO-driven Bacteroidaceae selection in the gut environment, which may cause a reduction of butyrate-producing clostridia.

14.
Gut Microbes ; 14(1): 2084306, 2022.
Article in English | MEDLINE | ID: mdl-36519447

ABSTRACT

AbstarctIn fecal microbiota transplantation (FMT) against recurrent Clostridioides difficile infection (CDI), clinical outcomes are usually determined after 8 weeks. We hypothesized that the intestinal microbiota changes earlier than this timepoint, and analyzed fecal samples obtained 1 week after treatment from 64 patients diagnosed with recurrent CDI and included in a randomized clinical trial, where the infection was treated with either vancomycin-preceded FMT (N = 24), vancomycin (N = 16) or fidaxomicin (N = 24). In comparison with non-responders, patients with sustained resolution after FMT had increased microbial alpha diversity, enrichment of Ruminococcaceae and Lachnospiraceae, depletion of Enterobacteriaceae, more pronounced donor microbiota engraftment, and resolution of gut microbiota dysbiosis. We found that a constructed index, based on markers for the identified genera Escherichia and Blautia, successfully predicted clinical outcomes at Week 8, which exemplifies a way to utilize clinically feasible methods to predict treatment failure. Microbiota changes were restricted to patients who received FMT rather than antibiotic monotherapy, indicating that FMT confers treatment response in a different way than antibiotics. We suggest that early identification of microbial community structures after FMT is of clinical value to predict response to the treatment.


Subject(s)
Clostridioides difficile , Clostridium Infections , Gastrointestinal Microbiome , Humans , Fecal Microbiota Transplantation/methods , Clostridioides difficile/physiology , Vancomycin/therapeutic use , Clostridium Infections/therapy , Treatment Outcome , Anti-Bacterial Agents/therapeutic use
15.
Sci Rep ; 12(1): 21503, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36513721

ABSTRACT

Drug-loaded electrospun nanofibers are potential drug carrier systems that may optimize disease treatment while reducing the impact on commensal microbes. The feasibility of streptomycin-loaded pullulan nanofibers fabricated from a green electrospinning procedure using water as the solvent was assessed. We conducted a rat study including a group treated with streptomycin-loaded nanofibers (STR-F, n = 5), a group treated with similar concentrations of streptomycin in the drinking water (STR-W, n = 5), and a non-treated control group (CTR, n = 5). Streptomycin was successfully loaded into nanofibers and delivered by this vehicle, which minimized the quantity of the drug released in the ileal compartment of the gut. Ingested streptomycin-resistant E. coli colonized of up to 106 CFU/g feces, revealing a selective effect of streptomycin even when given in the low amounts allowed by the nanofiber-based delivery. 16S amplicon sequencing of the indigenous microbiota revealed differential effects in the three groups. An increase of Peptostreptococcaceae in the cecum of STR-F animals may indicate that the fermentation of nanofibers directly or indirectly promoted growth of bacteria within this family. Our results elucidate relevant properties of electrospun nanofibers as a novel vehicle for delivery of antimicrobials to the large intestine.


Subject(s)
Nanofibers , Rats , Animals , Streptomycin/pharmacology , Escherichia coli , Drug Carriers , Colon , Drug Delivery Systems/methods
16.
Environ Pollut ; 305: 119340, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35460815

ABSTRACT

Perfluorooctanesulfonic acid (PFOS) is a persistent anthropogenic chemical that can affect the thyroid hormone system in humans and animals. In adults, thyroid hormones (THs) are regulated by the hypothalamic-pituitary-thyroid (HPT) axis, but also by organs such as the liver and potentially the gut microbiota. PFOS and other xenobiotics can therefore disrupt the TH system at various locations and through different mechanisms. To start addressing this, we exposed adult male rats to 3 mg PFOS/kg/day for 7 days and analysed effects on multiple organs and pathways simultaneously by transcriptomics. This included four primary organs involved in TH regulation, namely hypothalamus, pituitary, thyroid, and liver. To investigate a potential role of the gut microbiota in thyroid hormone regulation, two additional groups of animals were dosed with the antibiotic vancomycin (8 mg/kg/day), either with or without PFOS. PFOS exposure decreased thyroxine (T4) and triiodothyronine (T3) without affecting thyroid stimulating hormone (TSH), resembling a state of hypothyroxinemia. PFOS exposure resulted in 50 differentially expressed genes (DEGs) in the hypothalamus, 68 DEGs in the pituitary, 71 DEGs in the thyroid, and 181 DEGs in the liver. A concomitant compromised gut microbiota did not significantly change effects of PFOS exposure. Organ-specific DEGs did not align with TH regulating genes; however, genes associated with vesicle transport and neuronal signaling were affected in the hypothalamus, and phase I and phase II metabolism in the liver. This suggests that a decrease in systemic TH levels may activate the expression of factors altering trafficking, metabolism and excretion of TH. At the transcriptional level, little evidence suggests that the pituitary or thyroid gland is involved in PFOS-induced TH system disruption.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonic Acids/toxicity , Animals , Fluorocarbons/toxicity , Male , Rats , Thyroid Hormones/metabolism , Transcriptome
17.
Microbiome ; 10(1): 193, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36352460

ABSTRACT

BACKGROUND: Fecal microbiota transplantation (FMT) effectively prevents the recurrence of Clostridioides difficile infection (CDI). Long-term engraftment of donor-specific microbial consortia may occur in the recipient, but potential further transfer to other sites, including the vertical transmission of donor-specific strains to future generations, has not been investigated. Here, we report, for the first time, the cross-generational transmission of specific bacterial strains from an FMT donor to a pregnant patient with CDI and further to her child, born at term, 26 weeks after the FMT treatment. METHODS: A pregnant woman (gestation week 12 + 5) with CDI was treated with FMT via colonoscopy. She gave vaginal birth at term to a healthy baby. Fecal samples were collected from the feces donor, the mother (before FMT, and 1, 8, 15, 22, 26, and 50 weeks after FMT), and the infant (meconium at birth and 3 and 6 months after birth). Fecal samples were profiled by deep metagenomic sequencing for strain-level analysis. The microbial transfer was monitored using single nucleotide variants in metagenomes and further compared to a collection of metagenomic samples from 651 healthy infants and 58 healthy adults. RESULTS: The single FMT procedure led to an uneventful and sustained clinical resolution in the patient, who experienced no further CDI-related symptoms up to 50 weeks after treatment. The gut microbiota of the patient with CDI differed considerably from the healthy donor and was characterized as low in alpha diversity and enriched for several potential pathogens. The FMT successfully normalized the patient's gut microbiota, likely by donor microbiota transfer and engraftment. Importantly, our analysis revealed that some specific strains were transferred from the donor to the patient and then further to the infant, thus demonstrating cross-generational microbial transfer. CONCLUSIONS: The evidence for cross-generational strain transfer following FMT provides novel insights into the dynamics and engraftment of bacterial strains from healthy donors. The data suggests FMT treatment of pregnant women as a potential strategy to introduce beneficial strains or even bacterial consortia to infants, i.e., neonatal seeding. Video Abstract.


Subject(s)
Clostridioides difficile , Clostridium Infections , Adult , Female , Humans , Infant, Newborn , Pregnancy , Bacteria , Clostridium Infections/therapy , Clostridium Infections/microbiology , Fecal Microbiota Transplantation/methods , Feces/microbiology , Recurrence , Treatment Outcome
18.
Exp Biol Med (Maywood) ; 247(1): 1-75, 2022 01.
Article in English | MEDLINE | ID: mdl-34783606

ABSTRACT

There is an evolution and increasing need for the utilization of emerging cellular, molecular and in silico technologies and novel approaches for safety assessment of food, drugs, and personal care products. Convergence of these emerging technologies is also enabling rapid advances and approaches that may impact regulatory decisions and approvals. Although the development of emerging technologies may allow rapid advances in regulatory decision making, there is concern that these new technologies have not been thoroughly evaluated to determine if they are ready for regulatory application, singularly or in combinations. The magnitude of these combined technical advances may outpace the ability to assess fit for purpose and to allow routine application of these new methods for regulatory purposes. There is a need to develop strategies to evaluate the new technologies to determine which ones are ready for regulatory use. The opportunity to apply these potentially faster, more accurate, and cost-effective approaches remains an important goal to facilitate their incorporation into regulatory use. However, without a clear strategy to evaluate emerging technologies rapidly and appropriately, the value of these efforts may go unrecognized or may take longer. It is important for the regulatory science field to keep up with the research in these technically advanced areas and to understand the science behind these new approaches. The regulatory field must understand the critical quality attributes of these novel approaches and learn from each other's experience so that workforces can be trained to prepare for emerging global regulatory challenges. Moreover, it is essential that the regulatory community must work with the technology developers to harness collective capabilities towards developing a strategy for evaluation of these new and novel assessment tools.


Subject(s)
Biomedical Research , Computer Simulation , Humans
19.
FEMS Microbiol Rev ; 45(4)2021 08 17.
Article in English | MEDLINE | ID: mdl-33428723

ABSTRACT

During the first 3 years of life, the microbial ecosystem within the human gut undergoes a process that is unlike what happens in this ecosystem at any other time of our life. This period in time is considered a highly important developmental window, where the gut microbiota is much less resilient and much more responsive to external and environmental factors than seen in the adult gut. While advanced bioinformatics and clinical correlation studies have received extensive focus within studies of the human microbiome, basic microbial growth physiology has attracted much less attention, although it plays a pivotal role to understand the developing gut microbiota during early life. In this review, we will thus take a microbial ecology perspective on the analysis of factors that influence the temporal development of the infant gut microbiota. Such factors include sources of microbes that seed the intestinal environment, physico-chemical (abiotic) conditions influencing microbial growth and the availability of nutrients needed by the intestinal microbes.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Adult , Humans
20.
Front Immunol ; 12: 705543, 2021.
Article in English | MEDLINE | ID: mdl-34531857

ABSTRACT

Background: It remains largely unknown how physicochemical properties of hydrolysed infant formulas influence their allergy preventive capacity, and results from clinical and animal studies comparing the preventive capacity of hydrolysed infant formula with conventional infant formula are inconclusive. Thus, the use of hydrolysed infant formula for allergy prevention in atopy-prone infants is highly debated. Furthermore, knowledge on how gut microbiota influences allergy prevention remains scarce. Objective: To gain knowledge on (1) how physicochemical properties of hydrolysed whey products influence the allergy preventive capacity, (2) whether host microbiota disturbance influences allergy prevention, and (3) to what extent hydrolysed whey products influence gut microbiota composition. Methods: The preventive capacity of four different ad libitum administered whey products was investigated in Brown Norway rats with either a conventional or an amoxicillin-disturbed gut microbiota. The preventive capacity of products was evaluated as the capacity to reduce whey-specific sensitisation and allergic reactions to intact whey after intraperitoneal post-immunisations with intact whey. Additionally, the direct effect of the whey products on the growth of gut bacteria derived from healthy human infant donors was evaluated by in vitro incubation. Results: Two partially hydrolysed whey products with different physicochemical characteristics were found to be superior in preventing whey-specific sensitisation compared to intact and extensively hydrolysed whey products. Daily oral amoxicillin administration, initiated one week prior to intervention with whey products, disturbed the gut microbiota but did not impair the prevention of whey-specific sensitisation. The in vitro incubation of infant faecal samples with whey products indicated that partially hydrolysed whey products might confer a selective advantage to enterococci. Conclusions: Our results support the use of partially hydrolysed whey products for prevention of cow's milk allergy in atopy-predisposed infants regardless of their microbiota status. However, possible direct effects of partially hydrolysed whey products on gut microbiota composition warrants further investigation.


Subject(s)
Amoxicillin/pharmacology , Gastrointestinal Microbiome , Milk Hypersensitivity , Protein Hydrolysates/pharmacology , Whey Proteins/pharmacology , Animals , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Humans , Milk Hypersensitivity/immunology , Milk Hypersensitivity/prevention & control , Rats
SELECTION OF CITATIONS
SEARCH DETAIL