Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Pediatr ; 23(1): 334, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37391699

ABSTRACT

PURPOSE: To compare the performance of Neutrophil-to-Lymphocyte Ratio (NLR) with that of Platelet-to-Lymphocyte Ratio (PLR) in diagnosing neonatal sepsis (NS). METHODS: PubMed and Embase were searched for relevant studies from the inception of the databases to May, 2022. The pooled sensitivity (SEN), specificity (SPE), and area under the receiver operator characteristic curve (AUC) were measured. RESULTS: Thirteen studies involving 2610 participants were included. The SEN, SPE, and AUC of NLR were 0.76 (95%CI: 0.61-0.87), 0.82 (95%CI: 0.68-0.91), and 0.86 (95%CI: 0.83-0.89), respectively, and those of PLR were 0.82 (95%CI: 0.63-0.92), 0.80 (95%CI: 0.24-0.98), and 0.87 (95%CI: 0.83-0.89), respectively. Significant heterogeneity was observed among the studies. Subgroup analysis and meta-regression showed that types of sepsis (p = 0.01 for SEN), gold standard (p = 0.03 for SPE), and pre-set threshold (p<0.05 for SPE) might be the sources of heterogeneity for NLR, whereas the pre-set threshold (p<0.05 for SPE) might be the source of heterogeneity for PLR. CONCLUSIONS: NLR and PLR would be of great accuracy for the diagnosis of NS, and the two indicators have similar diagnostic performance. However, the overall risk of bias was high, and significant heterogeneity was identified among the included studies. The results of this study should be interpreted prudently, and the normal or cut-off values and the type of sepsis should be considered. More prospective studies are needed to further support the clinical application of these findings.


Subject(s)
Neonatal Sepsis , Sepsis , Infant, Newborn , Humans , Neonatal Sepsis/diagnosis , Neutrophils , Sepsis/diagnosis , Blood Platelets , Lymphocytes
2.
Molecules ; 28(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36770609

ABSTRACT

Hypercoordinate transition-metal species are mainly dominated by the 18-valence-electron (18ve) counting. Herein, we report ternary MAl6S6 (M = Ni, Pd, Pt) clusters with the planar hexacoordinate metal (phM) centers, which feature 16ve counting instead of the classic 18ve rule. These global-minimum clusters are established via unbiased global searches, followed by PBE0 and single-point CCSD(T) calculations. The phM MAl6 units are stabilized by six peripheral bridging S atoms in these star-like species. Chemical bonding analyses reveal that there are 10 delocalized electrons around the phM center, which can render the aromaticity according to the (4n + 2) Hückel rule. It is worth noting that adding an (or two) electron(s) to its π-type lowest unoccupied molecular orbital (LUMO) will make the system unstable.

3.
Molecules ; 28(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050043

ABSTRACT

Planar tetracoordinate carbon (ptC) species are scarce and exotic. Introducing four peripheral Te/Po auxiliary atoms is an effective strategy to flatten the tetrahedral structure of CAl4 (Td, 1A1). Neutral CAl4X4 (X = Te, Po) clusters possess quadrangular star structures containing perfect ptC centers. Unbiased density functional theory (DFT) searches and high-level CCSD(T) calculations suggest that these ptC species are the global minima on the potential energy surfaces. Bonding analyses indicate that 40 valence-electron (VE) is ideal for the ptC CAl4X4 (X = Te, Po): one delocalized π and three σ bonds for the CAl4 core; four lone pairs (LPs) of four X atoms, eight localized Al-X σ bonds, and four delocalized Al-X-Al π bonds for the periphery. Thus, the ptC CAl4X4 (X = Te, Po) clusters possess the stable eight electron structures and 2π + 6σ double aromaticity. Born-Oppenheimer molecular dynamics (BOMD) simulations indicate that neutral ptC CAl4X4 (X = Te, Po) clusters are robust.

4.
Molecules ; 28(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37513457

ABSTRACT

As one of the important probes of chemical bonding, planar tetracoordinate carbon (ptC) compounds have been receiving much attention. Compared with ptC clusters, the heavier planar tetracoordinate silicon, germanium, tin, lead (ptSi/Ge/Sn/Pb) systems are scarcer and more exotic. The 18-valence-electron (ve)-counting is one important guide, though not the only rule, for the design of planar tetra-, penta-coordinate carbon and silicon clusters. The 18ve ptSi/Ge system is very scarce and needs to be expanded. Based on the isoelectronic principle and bonding similarity between the Al atom and the BeH unit, inspired by the previously reported ptSi global minimum (GM) SiAl42-, a series of ternary 18 ve XBe4H5- (X = Si, Ge, Sn, Pb) clusters were predicted with the ptSi/Ge/Sn/Pb centers. Extensive density functional theory (DFT) global minimum searches and high-level CCSD(T) calculations performed herein indicated that these ptSi/Ge/Sn/Pb XBe4H5- (X = Si, Ge, Sn, Pb) clusters were all true GMs on their potential energy surfaces. These GMs of XBe4H5- (X = Si, Ge, Sn, Pb) species possessed the beautiful fan-shaped structures: XBe4 unit can be stabilized by three peripheries bridging H and two terminal H atoms. It should be noted that XBe4H5- (X = Si, Ge, Sn, Pb) were the first ternary 18 ve ptSi/Ge/Sn/Pb species. The natural bond orbital (NBO), canonical molecular orbitals (CMOs) and adaptive natural densitpartitioning (AdNDP) analyses indicated that 18ve are ideal for these ptX clusters: delocalized one π and three σ bonds for the XBe4 core, three Be-H-Be 3c-2e and two Be-H σ bonds for the periphery. Additionally, 2π plus 6σ double aromaticity was found to be crucial for the stability of the ptX XBe4H5- (X = Si, Ge, Sn, Pb) clusters. The simulated photoelectron spectra of XBe4H5- (X = Si, Ge, Sn, Pb) clusters will provide theoretical basis for further experimental characterization.

5.
Molecules ; 28(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37375124

ABSTRACT

Resveratrol has anti-inflammatory, anti-cancer, and anti-aging pharmacological activities. There is currently a gap in academic research regarding the uptake, transport, and reduction of H2O2-induced oxidative damage of resveratrol in the Caco-2 cell model. This study investigated the role of resveratrol in the uptake, transport, and alleviation of H2O2-induced oxidative damage in Caco-2 cells. In the Caco-2 cell transport model, it was observed that the uptake and transport of resveratrol (10, 20, 40, and 80 µM) were time dependent and concentration dependent. Different temperatures (37 °C vs. 4 °C) could significantly affect the uptake and transportation of resveratrol. The apical to basolateral transport of resveratrol was markedly reduced by STF-31, a GLUT1 inhibitor, and siRNA intervention. Furthermore, resveratrol pretreatment (80 µM) improves the viability of Caco-2 cells induced by H2O2. In a cellular metabolite analysis combined with ultra-high performance liquid chromatography-tandem mass spectrometry, 21 metabolites were identified as differentials. These differential metabolites belong to the urea cycle, arginine and proline metabolism, glycine and serine metabolism, ammonia recycling, aspartate metabolism, glutathione metabolism, and other metabolic pathways. The transport, uptake, and metabolism of resveratrol suggest that oral resveratrol could prevent intestinal diseases caused by oxidative stress.


Subject(s)
Antioxidants , Hydrogen Peroxide , Humans , Resveratrol/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Caco-2 Cells , Glucose Transporter Type 1/metabolism , Hydrogen Peroxide/metabolism , Biological Transport
6.
Molecules ; 27(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36364234

ABSTRACT

We systematically explore the potential energy surface of the B3Al4+ combination of atoms. The putative global minimum corresponds to a structure formed by an Al4 square facing a B3 triangle. Interestingly, the dynamical behavior can be described as a Reuleaux molecular triangle since it involves the rotation of the B3 triangle at the top of the Al4 square. The molecular dynamics simulations, corroborating with the very small rotational barriers of the B3 triangle, show its nearly free rotation on the Al4 ring, confirming the fluxional character of the cluster. Moreover, while the chemical bonding analysis suggests that the multicenter interaction between the two fragments determines its fluxionality, the magnetic response analysis reveals this cluster as a true and fully three-dimensional aromatic system.


Subject(s)
Molecular Dynamics Simulation
7.
Phytother Res ; 34(12): 3236-3248, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32726508

ABSTRACT

Astragaloside IV(AS-IV), a saponin purified from Astragalus membranaceus (Fisch.) Bge.var.mongholicus (Bge.) Hsiao, has been widely used in traditional Chinese medicine. However, the underlying mechanisms in treating chronic glomerular nephritis (CGN) have not been fully understood. The aim of the present study was to evaluate the potential mechanism of AS-IV on CGN. CGN rats were administrated with AS-IV at 10 mg·kg-1 ·d-1 (ASL) and 20 mg·kg-1 ·d-1 (ASH). Twenty four hour proteinuria, blood urea nitrogen (BUN), and serum creatinine (SCr) were detected. Hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) staining were performed to evaluate the kidney lesion. Transmission electron microscope and GFP-RFP-LC3 transfection assay were used to monitor the effect of AS-IV on autophagy. IL-6 and IL-1ß were detected. The expression of CyclinD1, PI3K/AKT/AS160 pathway and autophagy related proteins were detected by Western Blot. The results demonstrated that AS-IV improved kidney function, ameliorated kidney lesion, and diminished inflammatory in CGN rats. Further, both in vivo and vitro study demonstrated that AS-IV inhibited the proliferation of mesangial cells. AS-IV further displayed a remarkable effect on inhibiting the activation of PI3K/AKT/AS160 pathway and improved the activation of autophagy in vivo and vitro. These results suggested that AS-IV is a potential therapeutic agent for CGN and merits further investigation.


Subject(s)
Autophagy/drug effects , Glomerulonephritis/prevention & control , Renal Insufficiency, Chronic/prevention & control , Saponins/pharmacology , Triterpenes/pharmacology , Animals , Astragalus propinquus/chemistry , Cells, Cultured , Cytoprotection/drug effects , GTPase-Activating Proteins/metabolism , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Male , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/pathology , Signal Transduction/drug effects
8.
Genes Dev ; 24(17): 1882-92, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20810647

ABSTRACT

Mammary stem cells (MaSCs) play critical roles in normal development and perhaps tumorigenesis of the mammary gland. Using combined cell markers, adult MaSCs have been enriched in a basal cell population, but the exact identity of MaSCs remains unknown. We used the s-SHIP promoter to tag presumptive stem cells with GFP in the embryos of a transgenic mouse model. Here we show, in postnatal mammary gland development, that GFP(+) cap cells in puberty and basal alveolar bud cells in pregnancy each exhibit self-renewal and regenerative capabilities for all mammary epithelial cells of a new functional mammary gland upon transplantation. Single GFP(+) cells can regenerate the mammary epithelial network. GFP(+) mammary epithelial cells are p63(+), CD24(mod), CD49f(high), and CD29(high); are actively proliferating; and express s-SHIP mRNA. Overall, our results identify the activated MaSC population in vivo at the forefront of rapidly developing terminal end buds (puberty) and alveolar buds (pregnancy) in the mammary gland. In addition, GFP(+) basal cells are expanded in MMTV-Wnt1 breast tumors but not in ErbB2 tumors. These results enable MaSC in situ identification and isolation via a consistent single parameter using a new mouse model with applications for further analyses of normal and potential cancer stem cells.


Subject(s)
Gene Expression Regulation, Developmental , Mammary Glands, Animal/metabolism , Phosphoric Monoester Hydrolases/genetics , Promoter Regions, Genetic/genetics , Stem Cells/metabolism , Animals , Breast Neoplasms/physiopathology , Cell Differentiation , Female , Gene Expression Regulation, Neoplastic , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Inositol Polyphosphate 5-Phosphatases , Mammary Glands, Animal/cytology , Mice , Mice, Transgenic , Pregnancy , Stem Cells/cytology
9.
Biochem Biophys Res Commun ; 491(4): 1083-1091, 2017 09 30.
Article in English | MEDLINE | ID: mdl-28782518

ABSTRACT

Folate receptor alpha (FRα) is over-expressed in numerous epithelial malignancies, however, the association between FRα and cervical cancer remains unclear. The purpose of this study was to explore the effects of FRα on cervical cancer and its regulation of the ERK signaling pathway. In this case-control study, moderate/strong expression of FRα, phosphorylated ERK1/2 (p-ERK1/2), p-c-Fos, and p-c-Jun proteins was increased with the progressive severity of cervix lesions (P < 0.05). Moreover, the expression levels of p-ERK1/2, p-c-Fos, and p-c-Jun proteins was positively correlated with those of FRα protein in cervical squamous cell carcinoma (SCC) group (P < 0.05). In vitro experiment indicated down-regulation of FRα by siRNA suppressed cell proliferation, promoted cell apoptosis, induced cell cycle arrest at G0/G1 phase, and reduced expression of p-ERK1/2, p-c-Fos, and p-c-Jun proteins. The results suggest that FRα is associated with the progression of cervical cancer and regulates cervical cancer cells growth through phosphorylating ERK1/2, c-Fos, and c-Jun, which are key factors of the ERK signaling pathway. Therefore, FRα may be an effective target for early detection and therapy of cervical cancer.


Subject(s)
Folate Receptor 1/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Adult , Aged , Female , Humans , Middle Aged , Uterine Cervical Neoplasms/genetics
10.
BMC Med Educ ; 15: 197, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26530114

ABSTRACT

BACKGROUND: This cross-sectional, questionnaire-based survey, conducted in Shanxi Province, China, evaluated the knowledge of community physicians of secondary prevention of ischemic stroke and transient ischemic attacks (TIAs). METHODS: A total of 1910 physicians practicing at 832 community-based clinics, hospitals and other care centers in 11 prefectures of Shanxi Province completed the questionnaires between 1 July and 30 September 2013. RESULTS: Over 90 % of participants were aware of the most common risk factors for stroke, but lifestyle-related factors were seen as of low or medium importance for secondary prevention. Only about 50 % of physicians were aware of the existence of commonly used stroke scales, and fewer said that they would use those scales in their clinical practice. There were slight differences in the responses to some of the questions on risk factors and stroke scales were associated with the physicians' gender, academic qualifications, practice duration and location. Less than half of the participants were aware of the secondary prevention recommendations included in the most recent guidelines. CONCLUSION: The survey revealed a huge gap in knowledge of current guidelines for secondary prevention of ischemic stroke and TIA among the physicians surveyed. Continuing education and training of community physicians, administered as a public health program, is needed to improve the healthcare of ischemic stroke and TIA patients.


Subject(s)
Clinical Competence , Outcome Assessment, Health Care , Surveys and Questionnaires , Adult , Attitude of Health Personnel , Chi-Square Distribution , China , Community Health Services/organization & administration , Cross-Sectional Studies , Female , Humans , Ischemic Attack, Transient/prevention & control , Ischemic Attack, Transient/therapy , Male , Middle Aged , Needs Assessment , Physicians, Family/statistics & numerical data , Secondary Prevention/methods , Secondary Prevention/trends , Stroke/prevention & control , Stroke/therapy
11.
Transl Androl Urol ; 13(2): 218-229, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38481871

ABSTRACT

Background: EH-2090 is Mindray's new-generation fully automatic urine formed element analyzer (hereinafter referred to as EH-2090). Currently, there are no studies on EH-2090, so we evaluated the analytical and clinical performance of this instrument to verify that it can meet daily clinical needs, and used manual microscopy as a reference method. Methods: The analytical performance of the EH-2090 was first evaluated for repeatability, linearity, reproducibility, and carryover. We collected urine samples from outpatient and inpatient departments of Peking University Shenzhen Hospital. Uncentrifuged urine was compared with the EH-2090 using the Fuchs-Rosenthal counting method-a quantitative reference method for microscopy-for comparative studies in terms of red blood cell (RBC) and white blood cell (WBC) counting accuracy. Passing-Bablok regression analysis was performed for RBC and WBC counts. Two laboratory technicians performed centrifugation and manual analysis (microscopy) to evaluate its performance at detecting RBCs, WBCs, and casts, sensitivities and specificities were calculated. Results: The EH-2090's between-run reproducibility, within-day reproducibility, between-day reproducibility, and within-laboratory reproducibility for formed components of urine all met the laboratory requirements. There was a good correlation between the counting accuracy of RBCs (r=0.965, P<0.0001) and WBCs (r=0.894, P<0.0001) by the EH-2090 and the Fuchs-Rosenthal method. The positive coincidence rates of RBC and manual microscopy were 86.08% and 92.41%, respectively, and the negative coincidence rates were 88.39% and 85.81%, respectively. The positive coincidence rates before and after the WBC review were 89.33% and 92.00%, respectively, whereas the negative ones were 77.64% and 83.23%, respectively. The positive coincidence rates before and after cast review were 77.78% and 82.05%, respectively, and the negative ones were 97.09% and 93.60%, respectively. Conclusions: The EH-2090 has good analytical and clinical performance. Its RBC and WBC counting accuracy correlates well with the quantitative reference method of microscopy.

12.
Chem Commun (Camb) ; 60(49): 6300-6303, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38818579

ABSTRACT

Herein we report a square-like D4h H©K4H4- anion with one planar tetracoordinate hydrogen (ptH) center, which is the global minimum (GM) structure and possesses good dynamic stability. The planar structure of the system is preserved by four peripheral K-H-K three-center two-electron (3c-2e) σ bonds together with one 5c-2e σ bond over the HK4 core. The multicenter ionic bonds dominate the stability of ptH, while the contribution of qualitative σ aromaticity is extremely limited.

13.
Chem Commun (Camb) ; 60(10): 1341-1344, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38197330

ABSTRACT

Replacing one of the peripheral Se with a Se2 bridge is an effective strategy to flatten the C4v CB4Se4 cluster. The global minimum of CB4Se5 contains one fan-shaped planar tetracoordinate carbon (ptC) CB4 core, possessing double 2π + 6σ aromaticity. The peripheral Se2 bridge is dexterous and crucial for the stability of CB4Se5.

14.
Int Immunopharmacol ; 127: 111386, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38109839

ABSTRACT

Pathogenic Escherichia coli (E. coli) can cause intestinal diseases in humans and livestock, damage the intestinal barrier, increase systemic inflammation, and seriously threaten human health and the development of animal husbandry. In this study, we designed and synthesized a novel conjugate florfenicol sulfathiazole (FST) based on drug combination principles, and investigated its antibacterial activity in vitro and its protective effect on inflammatory response and intestinal barrier function in E. coli O78-infected mice in vivo. The results showed that FST had superior antibacterial properties and minimal cytotoxicity compared with its prodrugs as florfenicol and sulfathiazole. FST protected mice from lethal E. coli infection, reduced clinical signs of inflammation, reduced weight loss, alleviated intestinal structural damage. FST decreased the expression of inflammatory cytokines IL-1ß, IL-6, TNF-α, and increased the expression of claudin-1, Occludin, and ZO-1 in the jejunum, improved the intestinal barrier function, and promoted the absorption of nutrients. FST also inhibited the expression of TLR4, MyD88, p-p65, and p-p38 in the jejunum. The study may lay the foundation for the development of FST as new drugs for intestinal inflammation and injury in enteric pathogen infection.


Subject(s)
Escherichia coli Infections , Escherichia coli , Thiamphenicol/analogs & derivatives , Humans , Animals , Mice , Intestinal Mucosa , Intestinal Barrier Function , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Escherichia coli Infections/drug therapy , Escherichia coli Infections/pathology , Inflammation/drug therapy , Inflammation/pathology , Sulfathiazole
15.
Toxics ; 12(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38393218

ABSTRACT

Resveratrol (RSV), a polyphenol, is known to have a wide range of pharmacological properties in vitro. RSV may have therapeutic value for various neurodegenerative diseases via neuroprotective effects. However, it is not yet clear whether RSV can induce intestinal-brain interactions. It is assumed that the intestinal cells may secrete some factors after being stimulated by other substances. These secreted factors may activate nerve cells through gut-brain interaction, such as exosomes. In this study, it was discovered that Caco-2 cells treated with RSV secrete exosomes to activate SH-SY5Y neuronal cells. The results showed that secreted factors from RSV-treated Caco-2 cells activated SH-SY5Y. The exosomes of RSV-treated Caco-2 cells activated SH-SY5Y cells, which was manifested in the lengthening of the nerve filaments of SH-SY5Y cells. The exosomes were characterized using transmission electron microscopy and sequenced using the Illumina NovaSeq 6000 sequencer. The results showed that the miRNA expression profile of exosomes after RSV treatment changed, and twenty-six kinds of miRNAs were identified which expressed differentially between the control group and the RSV-treated group. Among them, three miRNAs were selected as candidate genes for inducing SH-SY5Y neural cell activation. Three miRNA mimics could activate SH-SY5Y neurons. These results suggested that the miRNA in intestinal exocrine cells treated with RSV may play an important role in the activation of SH-SY5Y neurons.

16.
Biomed Pharmacother ; 173: 116400, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38484560

ABSTRACT

Hyperlipidemia caused by abnormal lipid metabolism has reached epidemic proportions. This phenomenon is also common in companion animals. Previous studies showed that AEE significantly improves abnormal blood lipids in hyperlipidemia rats and mice, but its mechanism is still not clear enough. In this study, the mechanism and potential key pathways of AEE on improving hyperlipidemia in mice were investigated through the transcriptome and proteome study of ApoE-/- mice liver and the verification study on high-fat HepG2 cells. The results showed that AEE significantly decreased the serum TC and LDL-C levels of hyperlipidemia ApoE-/- mice, and significantly increased the enzyme activity of CYP7A1. After AEE intervention, the results of mice liver transcriptome and proteome showed that differential genes and proteins were enriched in lipid metabolism-related pathways. The results of RT-qPCR showed that AEE significantly regulated the expression of genes related to lipid metabolism in mice liver tissue. AEE significantly upregulated the protein expression of CYP7A1 in hyperlipidemia ApoE-/- mice liver tissue. The results in vitro showed that AEE significantly decreased the levels of TC and TG, and improved lipid deposition in high-fat HepG2 cells. AEE significantly increased the expression of CYP7A1 protein in high-fat HepG2 cells. AEE regulates the expression of genes related to lipid metabolism in high-fat HepG2 cells, mainly by FXR-SHP-CYP7A1 and FGF19-TFEB-CYP7A1 pathways. To sum up, AEE can significantly improve the hyperlipidemia status of ApoE-/- mice and the lipid deposition of high-fat HepG2 cells, and its main pathway is probably the bile acid metabolism-related pathway centered on CYP7A1.


Subject(s)
Hyperlipidemias , Mice , Rats , Animals , Hyperlipidemias/drug therapy , Hyperlipidemias/genetics , Hyperlipidemias/metabolism , Proteomics , Proteome/metabolism , Diet, High-Fat/adverse effects , Lipids , Lipid Metabolism/genetics , Gene Expression Profiling , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Liver/metabolism
17.
Chem Commun (Camb) ; 59(33): 4966-4969, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37014699

ABSTRACT

In this work, we analyzed the bonding and fluxional character of the global minimum of CAl11-. Its structure is formed by two stacked layers, one of them resembles the well-known planar tetracoordinate carbon CAl4 on top of a hexagonal Al@Al6 wheel. Our results show that the CAl4 fragment rotates freely around the central axis. The exceptional stability and fluxionality of CAl11- derive from its particular electron distribution.

18.
Front Cell Dev Biol ; 11: 1279227, 2023.
Article in English | MEDLINE | ID: mdl-38033854

ABSTRACT

The placenta, being a temporary organ, plays a crucial role in facilitating the exchange of nutrients and gases between the mother and the fetus during pregnancy. Any abnormalities in the development of this vital organ not only lead to various pregnancy-related disorders that can result in fetal injury or death, but also have long-term effects on maternal health. In vitro models have been employed to study the physiological features and molecular regulatory mechanisms of placental development, aiming to gain a detailed understanding of the pathogenesis of pregnancy-related diseases. Among these models, trophoblast stem cell culture and organoids show great promise. In this review, we provide a comprehensive overview of the current mature trophoblast stem cell models and emerging organoid models, while also discussing other models in a systematic manner. We believe that this knowledge will be valuable in guiding further exploration of the complex maternal-fetal interface.

19.
Biomed Pharmacother ; 166: 115311, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572635

ABSTRACT

BACKGROUND: Exosomes play an essential role in maintaining normal brain function due to their ability to cross the blood-brain barrier. Aspirin eugenol ester (AEE) is a new medicinal compound synthesized by the esterification of aspirin with eugenol using the prodrug principle. Aspirin has been reported to have neuroprotective effects and may be effective against neurodegenerative diseases. PURPOSE: This study wanted to investigate how AEE affected neurological diseases in vivo and in vitro. EXPERIMENTAL APPROACH: A multi-omics approach was used to explore the effects of AEE on the nervous system. Gene and protein expression changes of BDNF and NEFM in SY5Y cells after AEE treatment were detected using RT-qPCR and Western Blot. KEY RESULTS: The multi-omics results showed that AEE could regulate neuronal synapses, neuronal axons, neuronal migration, and neuropeptide signaling by affecting transport, inflammatory response, and regulating apoptosis. Exosomes secreted by AEE-treated Caco-2 cells could promote the growth of neurofilaments in SY5Y cells and increased the expression of BDNF and NEFM proteins in SY5Y cells. miRNAs in the exosomes of AEE-treated Caco-2 cells may play an important role in the activation of SY5Y neuronal cells. CONCLUSIONS: In conclusion, AEE could play positive effects on neurological-related diseases.


Subject(s)
Brain-Derived Neurotrophic Factor , Eugenol , Humans , Eugenol/pharmacology , Eugenol/therapeutic use , Caco-2 Cells , Brain-Derived Neurotrophic Factor/genetics , Multiomics , Aspirin/pharmacology , Aspirin/therapeutic use
20.
Biomed Pharmacother ; 167: 115486, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37708693

ABSTRACT

Atherosclerosis is a chronic immune inflammatory disease. Aspirin eugenol ester (AEE) is a novel safe and non-toxic compound with many pharmacological effects such as anti-inflammatory, anti-hyperlipidemic and anti-thrombotic action. In order to investigate the effect of AEE on the inhibition of aortic lipid plaque formation and macrophage-derived foam cell formation induced by oxidized low density lipoprotein (ox-LDL), in vivo atherosclerosis model by feeding ApoE-/- mice with a high-fat diet and foam cells formation in vitro model by ox-LDL-induced RAW264.7 macrophages were established. It was found that AEE decreased the levels of TC and LDL-C in serum, and the plaque formation area and lipid accumulation in the aortic intima of ApoE-/- mice. In vitro studies showed that AEE could prevent the uptake of ox-LDL and reduce the contents of TC and FC in cells. AEE enhanced the cholesterol efflux by increasing the expression of ABCA1, ABCG1 and PPARγ, which effectively alleviated excess cholesterol accumulated in the cells. Meanwhile, AEE also reduced the secretion and expression of inflammatory factors in the cells. In addition, AEE could reverse the action of PPARγ inhibitor T0070907 and/or ox-LDL. Therefore, AEE may become an effective candidate drug for the prevention of atherosclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL