Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Planta Med ; 90(2): 84-95, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37714195

ABSTRACT

A brand-new class of interstitial cells, called telocytes, has been detected in the heart. Telocytes can connect and transmit signals to almost all cardiomyocytes; this is highly interrelated with the occurrence and development of heart diseases. Modern studies have shown that berberine has a therapeutic effect on cardiovascular health. However, berberine's mechanism of action on the cardiovascular system through cardiac telocytes is unclear. Interestingly, 5 µm of berberine remarkably decreased the concentration of intracellular calcium and membrane depolarization in cultured telocytes, upregulated the expression of CX43 and ß-catenin, and downregulated the expressions of TRPV4 and TRPV1. Here, telocytes were identified in the vascular adventitia and intima, endocardium, myocardium, adventitia, and heart valves. Moreover, telocytes were broadly dispersed around cardiac vessels and interacted directly through gap junctions and indirectly through extracellular vesicles. Together, cardiac telocytes interact with berberine and then deliver drug information to the heart. Telocytes may be an essential cellular target for drug therapy of the cardiovascular system.


Subject(s)
Berberine , Telocytes , Animals , Rabbits , Berberine/pharmacology , Myocardium/metabolism , Telocytes/metabolism , Endocardium/metabolism , Myocytes, Cardiac
2.
Vet Res ; 54(1): 97, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858267

ABSTRACT

The occurrence of human infections caused by avian H9N2 influenza viruses has raised concerns regarding the potential for human epidemics and pandemics. The molecular basis of viral adaptation to a new host needs to be further studied. Here, the bases of nucleotides 627 and 701 of PB2 were changed according to the uncoverable purine-to-pyrimidine transversion to block the development of PB2 627K and 701N mutations during serial passaging in mice. The purpose of this experiment was to identify key adaptive mutations in polymerase and NP genes that were obscured by the widely known host range determinants PB2 627K and 701N. Mouse-adapted H9N2 variants were obtained via twelve serial lung-to-lung passages. Sequence analysis showed that the mouse-adapted viruses acquired several mutations within the seven gene segments (PB2, PB1, PA, NP, HA, NA, and NS). One variant isolate with the highest polymerase activity possessed three substitutions, PB2 S155N, PA S49Y and D347G, which contributed to the highly virulent and mouse-adaptative phenotype. Further studies demonstrated that these three mutations resulted in increased polymerase activity, viral transcription and replication in mammalian cells, severe interstitial pneumonia, excessive inflammatory cellular infiltration and increased growth rates in mice. Our results suggest that the substitution of these three amino acid mutations may be an alternative strategy for H9N2 avian influenza viruses to adapt to mammalian hosts. The continued surveillance of zoonotic H9N2 influenza viruses should also include these mammalian adaptation markers as part of our pandemic preparedness efforts.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Orthomyxoviridae Infections , Animals , Mice , Humans , Influenza A Virus, H9N2 Subtype/genetics , Orthomyxoviridae Infections/veterinary , Virulence , Viral Proteins/genetics , Virulence Factors , Mammals , Virus Replication/genetics , Mice, Inbred BALB C
3.
Microsc Microanal ; 29(5): 1746-1754, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37639834

ABSTRACT

Electroacupuncture has been generally applied to target obesity, the principle of which is based on the meridian in traditional Chinese medicine. Although Telocytes (TCs) have been reported as the potential essence of meridians, their specific role in the electroacupuncture treatment of obesity remains unclear. Thus, we investigated the cellular evidence for TC-mediated electroacupuncture to alleviate obesity. Mice were divided into three groups as follows: electroacupuncture group (EA), control group (CG), and normal group (NG). The present study showed that the weight of perirenal white adipose tissue (rWAT), the serum level of total cholesterol, and the low-density lipoprotein cholesterol were all significantly decreased after electroacupuncture. Ultrastructurally, the prolongations (telopodes, Tps) of TCs were in direct contact with adipocytes, and lipid droplets were distributed on the surface of Tps. The proportions of double-positive fluorescent areas of TCs (CD34 and PDGFRα) were significantly elevated with concomitant elongated Tps in EA mice, as compared to those in CG mice. The expression of Cx43 and CD63 (gap junction and exosome markers) was significantly enhanced. These characteristics facilitated the transmission of electroacupuncture stimulation from skin to rWAT. We conclude that electroacupuncture relieved obesity by activating TCs morphologically, upregulating the gap junctions between TCs, and increasing the exosomes around TCs.


Subject(s)
Electroacupuncture , Exosomes , Telocytes , Animals , Mice , Exosomes/metabolism , Cholesterol/metabolism
4.
Microsc Microanal ; 29(3): 1190-1204, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37749671

ABSTRACT

Acupuncture can ameliorate or treat diseases according to the meridian theory in traditional Chinese medicine (TCM); however, its mechanism has not been scientifically clarified. On the other hand, telocytes (TCs) are morphologically in accordance with the meridian system, which needs further cytological investigations and acupuncture confirmation. The present study showed that acupuncture could activate TCs in several ways, alleviating rabbit ulcerative colitis. TCs could cytologically communicate the acupoints, the acupuncture sites in skin with their corresponding large intestine by TC homo-cellular junctions, exosomes around TCs, and TC-mediated nerves or blood vessels. TCs expressed transient receptor potential vanilloid type 4, the mechanosensitive channel protein that can transduce the mechanical stimulation of acupuncture into biochemical signals transferring along the extremely thin and long TCs. Collectively, a cellular mechanism diagram of acupuncture was concluded based on TC characteristics. Those results also confirmed the viewpoint that TCs were the key cells of meridian essence in TCM.


Subject(s)
Acupuncture Therapy , Colitis, Ulcerative , Meridians , Telocytes , Animals , Rabbits , Colitis, Ulcerative/therapy , Communication
5.
J Virol ; 95(7)2021 03 10.
Article in English | MEDLINE | ID: mdl-33472933

ABSTRACT

Tembusu Virus (TMUV) is an emerging and re-emerging zoonotic pathogen that adversely affects poultry industry in recent years. TMUV disease is characterized by nonsuppurative encephalitis in ducklings. The duckling infection model was established to study the mechanism of TMUV crossing the blood-brain barrier (BBB) into the central nervous system (CNS). Here, we showed that no obvious clinical symptoms and enhancement of BBB permeability occurred at the early stage of infection (3∼5 dpi). While simultaneously virus particles were observed by transmission electron microscopy in the brain, inducing the accumulation of inflammatory cytokines. Neurological symptoms and disruption of BBB appeared at the intermediate stage of infection (7∼9 dpi). It was confirmed that TMUV could survive and propagate in brain microvascular endothelial cells (BMECs), but did not affect the permeability of BBB in vivo and in vitro at an early date. In conclusion, TMUV enters the CNS then causes encephalitis, and finally destruct the BBB, which may be due to the direct effect of TMUV on BMECs and the subsequent response of "inflammatory storm".IMPORTANCE The TMUV disease has caused huge losses to the poultry industry in Asia, which is potentially harmful to public health. Neurological symptoms and their sequelae are the main characters of this disease. However, the mechanism of how this virus enters the brain and causes encephalitis is unclear. In this study, we confirmed that the virus entered the CNS and then massively destroyed BBB and the BBB damage was closely associated with the subsequent outbreak of inflammation. TMUV may enter the CNS through the transcellular and "Trojan horse" pathways. These findings can fill the knowledge gap in the pathogenesis of TMUV-infected poultry and be benefit for the treatment of TMUV disease. What's more, TMUV is a representative to study the infection of avian flavivirus. Therefore, our studies have significances both for understanding of the full scope of mechanisms of TMUV and other flavivirus infection, and conceivably, for therapeutics.

6.
Org Biomol Chem ; 19(39): 8613, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34596643

ABSTRACT

Correction for 'NocU is a cytochrome P450 oxygenase catalyzing N-hydroxylation of the indolic moiety during the maturation of the thiopeptide antibiotics nocathiacins' by Heng Guo et al., Org. Biomol. Chem., 2021, DOI: 10.1039/d1ob01284c.

7.
Org Biomol Chem ; 19(38): 8338-8342, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34523664

ABSTRACT

The ribosomally synthesized and post-translationally modified peptide (RiPP) natural products include the family of thiopeptide antibiotics, where nocathiacins (NOCs) and nosiheptide (NOS) are structurally related bicyclic members featuring an indolic moiety within the side ring system. Compared with NOS, NOCs bear additional functionalities that lead to the improvement of water solubility and bioavailability, a problem inherent to most of the thiopeptide antibiotics, and thus hold potential for clinical use in anti-infective agent development. The process through which post-translational modifications (PTMs) occur to afford these functionalities remains unclear. In this study, an engineered NOS-producing strain is applied to study the function of NocU, a cytochrome P450 oxygenase unique during the PTMs in NOC biosynthesis. Benefiting from the isolation and structure characterization of nosiheptide U (NOS-U), a new NOS-type compound with an extra hydroxyl group at the indole nitrogen, we report that NocU is responsible for the N-hydroxylation of the indolic moiety during the maturation of NOCs. This finding reveals the cause of structural differences at the indole nitrogen of NOCs, which will not only accelerate the biosynthetic studies of NOCs, but also promote new analog development by utilizing the compatibility of the biosynthetic machinery of thiopeptide antibiotics.


Subject(s)
Anti-Bacterial Agents
8.
Fish Shellfish Immunol ; 97: 173-181, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31857223

ABSTRACT

It is conceivable that pathological conditions can cause intestinal barrier disruption and innate immune dysfunction. However, very limited information has been reported on the effect of seasonal variance on intestinal barriers and innate immunity. The present study was designed to investigate the seasonal variance in intestinal epithelial barriers and the associated innate immune response of turtle intestines during hibernation and nonhibernation periods. Goblet cells (GCs) demonstrated dynamic actions of the mucosal barrier with strong Muc2 protein expression during hibernation. However, weak Muc2 expression during nonhibernation was confirmed by immunohistochemistry, immunofluorescence and immunoblotting. Furthermore, light and transmission electron microscopy revealed that the hypertrophy of GCs resulted in the hypersecretion of mucus granules (MGs) and created a well-developed mucosal layer during hibernation. The absorptive cells (ACs), forming a physical barrier of tight junctions, and desmosomes were firmly anchored during hibernation. Conversely, during nonhibernation, the integrity of tight junctions, adherence junctions and desmosomes was noticeable expanded, causing increased paracellular permeability. As further confirmation, there was strong zonula occluden-1 (ZO-1) and connexins 43 (Cx43) protein expression during hibernation and weak ZO-1 and Cx43 expression during nonhibernation. Moreover, the expression level of the innate immune response proteins Toll-like receptors 2 and 4 (TLR2 and 4) were enhanced during hibernation and were reduced during nonhibernation. These results provide rich information about the seasonal fluctuations that interrupt intestinal epithelial barriers and innate immune response, which might be essential for protection and intestinal homeostasis.


Subject(s)
Immunity, Innate , Intestinal Mucosa/immunology , Intestine, Small/immunology , Seasons , Turtles/immunology , Turtles/physiology , Animals , Epithelial Cells/immunology , Goblet Cells/immunology , Hibernation , Hypertrophy , Intestinal Mucosa/cytology , Intestine, Small/cytology , Mucin-2/genetics , Tight Junctions/metabolism
9.
Microsc Microanal ; 26(3): 542-550, 2020 06.
Article in English | MEDLINE | ID: mdl-32284081

ABSTRACT

Post-testicular maturation of spermatozoa is crucial for attaining the morphological and functional capabilities needed for successful fertilization. Epididymal epithelia offer a favorable environment for spermatozoa that are stored long term in the turtle epididymis; however, sperm-epithelial interactions during storage, which are enormously important for sperm functional and morphological maturation, are still largely unknown in turtles. The present study examined the epididymis during the sperm-storage period (November-April) in the Chinese soft-shelled turtle (Pelodiscus sinensis). Light and transmission electron microscopy were used to determine the cellular features of each epididymal segment (caput, corpus, and cauda) and their epithelial interactions with the spermatozoa. Spermatozoa were mainly located in the lumena of caput, corpus, and cauda epididymides. Numerous spermatozoa were bound to apical surfaces of the epithelia, and several were even embedded in the epithelial cytoplasm of the caput and corpus epididymides. No embedded spermatozoa were found in the cauda epididymis. In all epididymal segments, principal and clear cells showed the synthetic activity, evidenced by a well-developed endoplasmic reticulum network and high and low electron-dense secretory materials, respectively. Principal and clear cells in the caput and corpus segments showed embedded spermatozoa in electron-dense secretions and in the lipid droplets within the cytoplasm. No lysosomes were observed around the embedded spermatozoa. The lumena of the caput and corpus segments showed few apocrine and low electron density secretions. In the lumen of the cauda epididymidis, different secretions, such as holocrine with low and high electron density and their fragmentation, apocrine, and dictyosome, were found and are summarized. Altogether, sperm physical interactions with secretions either in the cytoplasm of epithelium or in the lumen may support the viability, morphological maintenance, and transfer of various proteins involved in long-term sperm storage in the turtle. This interaction could help us to understand the mechanisms of long-term sperm storage and provide more insights into the reproductive strategies of turtle sperm preservation.


Subject(s)
Bodily Secretions/metabolism , Epididymis/metabolism , Epithelium/metabolism , Turtles/metabolism , Animals , Asian People , Epithelial Cells , Humans , Lipid Droplets , Male , Microscopy, Electron, Transmission , Reproduction , Spermatozoa
10.
Microsc Microanal ; 26(1): 148-156, 2020 02.
Article in English | MEDLINE | ID: mdl-31753050

ABSTRACT

The seminiferous tubule (ST) is the location of spermatogenesis, where mature spermatozoa are produced with the assistance of Sertoli cells. The role of extracellular vesicles in the direct communication between Sertoli-germ cells in the ST is still not fully understood. In this study, we reported multivesicular bodies (MVBs) and their source of CD63-enriched exosomes by light and ultrastructure microscopy during the reproductive phases of turtles. Strong CD63 immunopositivity was detected at the basal region in the early and luminal regions of the ST during late spermatogenesis by immunohistochemistry (IHC), immunofluorescence (IF), and western blot (WB) analysis. Labeling of CD63 was detected in the Sertoli cell cytoplasmic processes that surround the developing germ cells during early spermatogenesis and in the lumen of the ST with elongated spermatids during late spermatogenesis. Furthermore, ultrastructure analysis confirmed the existence of numerous MVBs in the Sertoli cell prolongations that surround the round and primary spermatogonia during acrosome biogenesis and with the embedded heads of spermatids in the cytoplasm of Sertoli cells. Additionally, in spermatids, Chrysanthemum flower centers (CFCs) generated isolated membranes involved in MVBs and autophagosome formation, and their fusion to form amphiosomes was also observed. Additionally, autophagy inhibition by 3-methyladenine (after 24 h) increased CD63 protein signals during late spermatogenesis, as detected by IF and WB. Collectively, our study found MVBs and CD63 rich exosomes within the Sertoli cells and their response to autophagy inhibition in the ST during the spermatogenesis in the turtle.


Subject(s)
Exosomes/ultrastructure , Multivesicular Bodies/ultrastructure , Seminiferous Tubules/physiology , Seminiferous Tubules/ultrastructure , Spermatogenesis , Tetraspanin 30/analysis , Turtles/physiology , Animals , Blotting, Western , Exosomes/chemistry , Immunohistochemistry , Male , Microscopy, Electron , Microscopy, Fluorescence , Multivesicular Bodies/chemistry
11.
Int J Mol Sci ; 21(6)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192184

ABSTRACT

The existence of telocytes (TCs) has not yet been established in the pancreases of aquatic reptiles. Here, we report TCs in the exocrine pancreas of Pelodiscus sinensis using transmission electron microscope (TEM), immunohistochemistry (IHC), and immunofluorescence (IF) techniques. TCs surrounded the acini and ducts of the connective tissue of the exocrine pancreas and between lobules and gland cells. The cells were located preferably close to the blood vessels, interlobular ducts, and nerve fibers. Ultrastructurally, TCs exhibited small and large bodies with thick and thin portions, podoms, and podomers, and prolongations that form dichotomous branching with hetero-cellular and homo-cellular junctions. The podom (thick) portions showed caveolae, mitochondria, rough endoplasmic reticulum, and vesicles. The nucleus carries heterochromatin and is irregular in shape. The shape of TCs depends on the number of telopodes (Tps) bearing long, short, spindle, triangular, and "beads on a string" shapes with twisted, tortuous prolongations and ramifications. Shed extracellular vesicles and exosomes were found frequently released from projections and Tps within connective tissue in the vicinity of the acini and collagen fibers. IHC and IF results showed CD34+, α-SMA+, and vimentin+, long and triangle-shaped TCs, consistent with the TEM findings. The presence of shaded vesicles from TCs might implicate their possible role in immune surveillance, tissue regeneration as well as regulatory functions in the reptilian pancreas.


Subject(s)
Cell Communication , Pancreas/cytology , Pancreas/ultrastructure , Telocytes/physiology , Telocytes/ultrastructure , Turtles , Animals , Biomarkers , Exosomes/metabolism , Fluorescent Antibody Technique , Immunohistochemistry , Pancreas/physiology
12.
Reprod Biol Endocrinol ; 17(1): 19, 2019 Feb 09.
Article in English | MEDLINE | ID: mdl-30738428

ABSTRACT

BACKGROUND: Steroidogenesis is an indispensable process that is indirectly associated with spermatogenesis in the Leydig cell (LC) to utilize the lipid droplets (LDs) that are critical to maintaining normal testosterone synthesis. The regulation of LD mobilization, known as lipophagy, in the LC is still largely unknown. METHOD: In the present study, the LC of the Chinese soft-shelled turtle was investigated to identify the steroidogenic activity and lipophagy during the annual reproductive cycle by light microscopy, immunohistochemistry (IHC), immunofluorescence (IF), and transmission electron microscopy (TEM). RESULTS: The LC showed a dynamic steroidogenic function with strong activity of 3ß-HSD, vimentin and tubular ER during hibernation by IHC and TEM. The tubulo-vesicular ER had a weak immunopositive reaction for 3ß-HSD in the LC during reproductive phase, suggesting persistent steroidogenic activity. ORO staining and TEM demonstrated that a larger number of LDs had accumulated in the LC during hibernation than in the reproductive phase. These LDs existed in close association with mitochondria and lysosomes by being dynamically surrounded by intermediate filaments to facilitate LD utilization. Lysosomes were found directly attached to large LDs, forming an autophagic tube and engulfing LDs, suggesting that micro-lipophagy occurs during hibernation. Furthermore, the IHC of ATG7 (Autophagy Related Gene 7) and the IF of the LC3 (Microtubule-associated protein light chain 3), p62 (Sequestosome-1 (SQSTM1) and LAMP1(Lysosomal-associated membrane protein 1) results demonstrated strong expression, and further confirmation by TEM showed the existence of an autophagosome and an autolysosome and their fusion during the hibernation season. CONCLUSION: In conclusion, the present study provides clear evidence of LD consumption in the LC by lipophagy, lysosome and mitochondria during the hibernation period, which is a key aspect of steroidogenesis in the Chinese soft-shelled turtle.


Subject(s)
Autophagy/physiology , Leydig Cells/metabolism , Lipid Metabolism , Steroids/metabolism , Turtles/metabolism , Animals , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Hibernation/physiology , Leydig Cells/ultrastructure , Lipid Droplets/metabolism , Lipid Droplets/ultrastructure , Lysosomes/metabolism , Lysosomes/ultrastructure , Male , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Mitochondria/metabolism , Mitochondria/ultrastructure , Reproduction/physiology , Turtles/physiology
13.
Fish Shellfish Immunol ; 95: 644-649, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31704204

ABSTRACT

Exosomes are secreted from various cells by multivesicular bodies (MVBs) that fuse with the plasma membrane and are involved in the intestinal immune response to maintain intestinal homeostasis. Here, we demonstrate the ultrastructural characteristics of MVBs and their exosomes in immune-related cells of the zebrafish intestine, including goblet cells (GCs), mitochondria-rich cells (MRCs), high endothelial cells (HECs) and lymphocytes. In GCs, MVBs with a low electron density were present under the nucleus. MVBs with exosomes were observed among mucin granules. "Heterogeneous" MVBs were identified within the cytoplasm around mucin granules. MRCs were observed in the intestinal mucosa epithelium, including "open-type" MRCs and "close-type" MRCs. Typical MVBs were identified in these MRCs. MVBs with a variety of exosomes were observed in the HECs of the capillary located in the lamina propria (LP). The HEC basement membrane budded outward to LP cells to form a plurality of basal blebs, later containing a large number of exosomes. MVBs also existed in the LP lymphocytes. A schematic diagram of the ultrastructural distribution of MVBs and their exosomes in the intestinal mucosal immune-related cells was created. Our findings provide cytological evidence for the source and ultrastructural distribution of exosomes within the different intestine cells of zebrafish. Component analysis and immunological functions of exosomes require future study.


Subject(s)
Exosomes/immunology , Exosomes/ultrastructure , Intestines/cytology , Intestines/immunology , Multivesicular Bodies/immunology , Zebrafish/immunology , Animals , Biological Transport , Female , Microscopy, Electron, Transmission , Multivesicular Bodies/ultrastructure
14.
Fish Shellfish Immunol ; 88: 578-586, 2019 May.
Article in English | MEDLINE | ID: mdl-30885742

ABSTRACT

Intercellular communication of gut epithelial cells is critical to gut mucosal homeostasis. Exosomes are important intercellular mediators in communication between cell to cell. Although many literature focus on the immunologic roles in the gut by the exosomes, the biological process of exosomes in the absorptive cells remains unknown. Uncovering the distribution, classification and formation process of multivesicular bodies (MVBs) and their exosomes in the absorptive cells of the zebrafish gut, is urgently needed to establish a platform for immunological research of fish gut exosomes. The expression levels of CD63 and TSG101 were different among the three segments of the gut, and they were enriched at the apex of the mid gut villi. The characteristics of MVBs and their exosomes in the absorptive cells were further revealed by transmission electron microscopy (TEM). Early endosomes (ee) were mainly present in the apical and basal cytoplasm of absorptive cells. Late endosomes (le) were mostly distributed with the supranuclear part of these cells. "Heterogeneous" MVBs were detected underlying the apical membranes of absorptive cells. Many exosomes with some MVB-like structures occurred in the lumen, indicating that the release process was mainly through apical secretion. Various MVBs with exosomes and the endosome-heterogeneous MVB-exosome complex existed widely in the mid gut absorptive cells, concluding that zebrafish as a potential model for in vivo MVBs and their exosomes research. All the results were summarized in a schematic diagram illustrating the morphological characteristics of gut MVBs and their exosomes in zebrafish.


Subject(s)
Exosomes/ultrastructure , Gastrointestinal Tract/cytology , Multivesicular Bodies/ultrastructure , Zebrafish , Animals , Gastrointestinal Tract/immunology , Immunity, Mucosal , Microscopy, Electron, Transmission
15.
Reprod Fertil Dev ; 31(4): 774-786, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30526797

ABSTRACT

Spermatozoa are known to be stored in the epididymis of the Chinese soft-shelled turtle Pelodiscus sinensis for long periods after spermiation from the testes, but the molecular mechanisms underlying this storage are largely unknown. In this study, epididymal spermatozoa were investigated to determine the potential molecular mechanism for long-term sperm storage in P. sinensis. Transmission electron microscopy (TEM) and Oil red O staining indicated that unusually large cytoplasmic droplets containing lipid droplets (LDs) were attached to the epididymal spermatozoa. However, the content of LDs decreased gradually with the sperm storage. LDs were surrounded by autophagic vesicles and sequestered as degradative cargo within autophagosome. Immunofluorescence and western blotting demonstrated that autophagy in spermatozoa increased gradually with the storage time. Invitro studies found that spermatozoa obtained from soft-shelled turtles in January can survive more than 40 days at 4°C. Furthermore, immunofluorescence and TEM showed that autophagy was involved in the degradation of LDs with the extension of sperm incubation. Inhibition of autophagy with 3-methyladenine significantly suppressed LD degradation. Moreover, adipose triglyceride lipase was involved in the metabolism of LDs. These findings indicate that lipophagy was activated to maximise LD breakdown, which contributes to long-term sperm storage in the epididymis of P. sinensis.


Subject(s)
Autophagy/physiology , Epididymis/metabolism , Lipase/metabolism , Spermatozoa/metabolism , Animals , Epididymis/cytology , Lipid Droplets/metabolism , Male , Spermatogenesis/physiology , Spermatozoa/cytology , Turtles
16.
Microsc Microanal ; 25(6): 1341-1351, 2019 12.
Article in English | MEDLINE | ID: mdl-31656212

ABSTRACT

The present study was designed to investigate the in vivo biological processes of multivesicular bodies (MVBs) and exosomes in mitochondria-rich cells (MRCs), goblet cells (GCs), and absorptive cells (ACs) in turtle intestines during hibernation. The exosome markers, cluster of differentiation 63 (CD63) and tumor susceptibility gene 101 (TSG101), were positively expressed in intestinal villi during turtle hibernation. The distribution and formation processes of MVBs and exosomes in turtle MRCs, GCs, and ACs were further confirmed by transmission electron microscopy. During hibernation, abundantly secreted early endosomes (ees) were localized in the luminal and basal cytoplasm of the MRCs and ACs, and late endosomes (les) were dispersed with the supranuclear parts of the MRCs and ACs. Many "heterogeneous" MVBs were identified throughout the cytoplasm of the MRCs and ACs. Interestingly, the ees, les, and MVBs were detected in the cytoplasm of the GCs during hibernation; however, they were absent during nonhibernation. Furthermore, the exocytosis pathways of exosomes and autophagic vacuoles were observed in the MRCs, GCs, and ACs during hibernation. In addition, the number of different MVBs with intraluminal vesicles (ILVs) and heterogeneous endosome-MVB-exosome complexes was significantly increased in the MRCs, GCs, and ACs during hibernation. All these findings indicate that intestinal epithelial cells potentially perform a role in the secretion of MVBs and exosomes, which are essential for mucosal immunity, during hibernation.


Subject(s)
Epithelial Cells/physiology , Exosomes/metabolism , Hibernation , Intestinal Mucosa/physiology , Multivesicular Bodies/metabolism , Turtles , Animals , Biomarkers/analysis , Epithelial Cells/ultrastructure , Exosomes/chemistry , Exosomes/ultrastructure , Immunohistochemistry , Microscopy, Electron, Transmission , Multivesicular Bodies/chemistry , Multivesicular Bodies/ultrastructure
17.
Fish Shellfish Immunol ; 81: 83-91, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29960063

ABSTRACT

Despite many studies being conducted over the past few decades, the origin of autophagosomal membranes remains unclear. The present study aimed to uncover the formation process of autophagosomal membranes in hepatocytes of zebrafish (Danio rerio), a model organism in medical science. Immunohistochemistry of zebrafish hepatocytes indicated that light chain 3-like protein 2 (LC3-II) is highly active in some hepatocytes, but poorly expressed in others. Under transmission electron microscopy, the amount of autophagosomes (APs) varied in different hepatocytes. When the endoplasmic reticulum (ER) is dispersed in the cytoplasm, few isolation membranes (IMs) and APs were observed. Subsequently, when the ER assembles into a particular "lamellar structure" (LS), IMs arise from it and extend to enwrap the mitochondria. With further aggregation of the ER, the LS developed into an over twenty-layered structure, and mitophagy was more obvious in the hepatocytes and cavities appeared in mitochondria. Finally, most ERs were assembled into several LSs. At this point, mitophagy was most active in the hepatocytes. Thereafter, glycogen and lipid droplet increased gradually, while the LS degenerated and ER scatter increased. Then, the glycogen and lipid droplets dominated the hepatocellular cytoplasm. After suppressing the formation of autophagosomes using 3-Methyladenine (3-MA), the LS could no longer be visualized in the hepatocellular cytoplasm, and mitophagy decreased drastically. Taken together, the results suggested that this LS in the hepatocytes of zebrafish, might be another manifestation of a pre-autophagosomal structure in zebrafish liver, analogous to the omegasome in yeast or the ER-IM complex in mammalian cell lines. Furthermore, selective mitophagy and consequent cyclic utilization of its products were probably relevant to dynamic cycle of the hepatocellular cytoplasm.


Subject(s)
Autophagosomes/ultrastructure , Endoplasmic Reticulum/ultrastructure , Hepatocytes/cytology , Mitophagy , Zebrafish/physiology , Animals , Hepatocytes/ultrastructure , Immunohistochemistry , Liver/cytology , Microscopy, Electron, Transmission
18.
Reprod Fertil Dev ; 30(11): 1514-1521, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29759112

ABSTRACT

Mitochondria are vital cellular organelles that have the ability to change their shape under different conditions, such as in response to stress, disease, changes in metabolic rate, energy requirements and apoptosis. In the present study, we observed remodelling of mitochondria during spermiogenesis and its relationship with mitochondria-associated granules (MAG). At the beginning of spermiogenesis, mitochondria are characterised by their round shape. As spermiogenesis progresses, the round-shaped mitochondria change into elongated and then swollen mitochondria, subsequently forming a crescent-like shape and finally developing into onion-like shaped mitochondria. We also noted changes in mitochondrial size, location and patterns of cristae at different stages of spermiogenesis. Significant differences (P<0.0001) were found in the size of the different-shaped mitochondria. In early spermatids transitioning to the granular nucleus stage, the size of the mitochondria decreased, but increased subsequently during spermiogenesis. Changes in size and morphological variations were achieved through marked mitochondrial fusion. We also observed a non-membranous structure (MAG) closely associated with mitochondria that may stimulate or control fusion during mitochondrial remodelling. The end product of this sophisticated remodelling process in turtle spermatozoa is an onion-like mitochondrion. The acquisition of this kind of mitochondrial configuration is one strategy for long-term sperm storage in turtles.


Subject(s)
Mitochondria/metabolism , Spermatogenesis/physiology , Spermatozoa/metabolism , Animals , Cell Nucleus/metabolism , Epididymis/metabolism , Male , Turtles
20.
Int J Oral Sci ; 16(1): 27, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548721

ABSTRACT

Uncovering the risk factors of pulmonary hypertension and its mechanisms is crucial for the prevention and treatment of the disease. In the current study, we showed that experimental periodontitis, which was established by ligation of molars followed by orally smearing subgingival plaques from patients with periodontitis, exacerbated hypoxia-induced pulmonary hypertension in mice. Mechanistically, periodontitis dysregulated the pulmonary microbiota by promoting ectopic colonization and enrichment of oral bacteria in the lungs, contributing to pulmonary infiltration of interferon gamma positive (IFNγ+) T cells and aggravating the progression of pulmonary hypertension. In addition, we identified Prevotella zoogleoformans as the critical periodontitis-associated bacterium driving the exacerbation of pulmonary hypertension by periodontitis, and the exacerbation was potently ameliorated by both cervical lymph node excision and IFNγ neutralizing antibodies. Our study suggests a proof of concept that the combined prevention and treatment of periodontitis and pulmonary hypertension are necessary.


Subject(s)
Dental Plaque , Hypertension, Pulmonary , Periodontitis , Humans , Mice , Animals , T-Lymphocytes/pathology , Bacteria , Dental Plaque/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL