Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Exp Cell Res ; 438(2): 114056, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38663475

ABSTRACT

It was reported that within the head and neck cancer (HNC) cell line CAL21 the epithelial-mesenchymal transition (EMT) and cell proliferation were promoted by Urokinase-Type Plasminogen Activator (PLAU) proteinase through TNFRSF12A. Additionally, in this paper HNC cell lines refer to Fadu and Tu686. A novel PLAU-STAT3 axis was found to be involved in HNC cell line proliferation and metastasis. PLAU expression in HNC samples was upregulated, besides, the elevated expression of PLAU was linked to the lower overall survival (OS) and disease-free survival (DFS). Ectopic PLAU expression promoted cell proliferation and migration, while PLAU knockdown exhibited opposite results. RNA-seq data identified the JAK-STAT signaling pathway, confirmed by western blotting. A recovery assay using S3I-201, a selective inhibitor of signal transducer and activator of transcription 3 (STAT3), indicated that PLAU promoted HNC cell line progression via STAT3 signaling in vitro. The oncogenic role of PLAU in HNC tumor growth in vivo was confirmed using xenograft models. In summary, we identified the tumorigenic PLAU function in the HNC progress. PLAU may represent a potential prognostic biomarker of HNC and the PLAU-STAT3 pathway might be considered a therapeutic target of HNC.


Subject(s)
Cell Movement , Cell Proliferation , Head and Neck Neoplasms , STAT3 Transcription Factor , Signal Transduction , Urokinase-Type Plasminogen Activator , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/genetics , Mice, Inbred BALB C , Mice, Nude , Receptors, Urokinase Plasminogen Activator , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Urokinase-Type Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/genetics , Xenograft Model Antitumor Assays
2.
Mol Ther ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414241

ABSTRACT

In chronic liver diseases, hepatic stellate cells (HSCs) are induced to form the myofibroblasts responsible for scar formation, leading to liver fibrosis and cirrhosis. Here, single-cell RNA sequencing with in vivo lineage tracing in nonalcoholic steatohepatitis (NASH) model mice reveals a subpopulation of HSCs transitioning back to a state resembling their developmental precursors, mesothelial cells (MCs), after liver injury. These damage-associated intermediates between HSCs and MCs (DIHMs) can be traced with a dual recombinase system by labeling Krt19-expressing cells within prelabeled Pdgfrb+ HSCs, and DIHMs highly express inflammation- and fibrosis-associated genes. Cre and Dre-inducible depletion of DIHMs by administering diphtheria toxin reduces liver fibrosis and alleviates liver damage in NASH model mice. Importantly, knockdown of Osr1, a zinc finger transcription factor of the OSR gene family, can block DIHM induction in vitro. Conditional knockout Osr1 in Pdgfrb-expressing mesenchymal cells in NASH model mice can reduce liver fibrosis in vivo. Our study collectively uncovers an injury-induced developmental reversion process wherein HSCs undergo what we call a mesenchymal-to-mesothelial transition, which can be targeted to develop interventions to treat chronic liver diseases.

3.
Cell Mol Life Sci ; 81(1): 318, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073571

ABSTRACT

Nerve regeneration and circuit reconstruction remain a challenge following spinal cord injury (SCI). Corticospinal pyramidal neurons possess strong axon projection ability. In this study, human induced pluripotent stem cells (iPSCs) were differentiated into pyramidal neuronal precursors (PNPs) by addition of small molecule dorsomorphin into the culture. iPSC-derived PNPs were transplanted acutely into a rat contusion SCI model on the same day of injury. Following engraftment, the SCI rats showed significantly improved motor functions compared with vehicle control group as revealed by behavioral tests. Eight weeks following engraftment, the PNPs matured into corticospinal pyramidal neurons and extended axons into distant host spinal cord tissues, mostly in a caudal direction. Host neurons rostral to the lesion site also grew axons into the graft. Possible synaptic connections as a bridging relay may have been formed between host and graft-derived neurons, as indicated by pre- and post-synaptic marker staining and the regulation of chemogenetic regulatory systems. PNP graft showed an anti-inflammatory effect at the injury site and could bias microglia/macrophages towards a M2 phenotype. In addition, PNP graft was safe and no tumor formation was detected after transplantation into immunodeficient mice and SCI rats. The potential to reconstruct a neuronal relay circuitry across the lesion site and to modulate the microenvironment in SCI makes PNPs a promising cellular candidate for treatment of SCI.


Subject(s)
Cell Differentiation , Disease Models, Animal , Induced Pluripotent Stem Cells , Spinal Cord Injuries , Animals , Spinal Cord Injuries/therapy , Spinal Cord Injuries/pathology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/transplantation , Induced Pluripotent Stem Cells/metabolism , Rats , Rats, Sprague-Dawley , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Mice , Neural Stem Cells/transplantation , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Female , Nerve Regeneration , Axons/metabolism
4.
Nano Lett ; 24(33): 10355-10361, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39119944

ABSTRACT

Combining rare earth elements with the halide perovskite structure offers valuable insights into designing nonlead (Pb) luminescent materials. However, most of these compositions tend to form zero-dimensional (0D) networks of metal-halide polyhedra, with higher-dimensional (1D, 2D, and 3D) structures receiving relatively less exploration. Herein, we present synthesis and optical properties of Cs3CeCl6·3H2O, characterized by its unique 1D crystal structure. The conduction band minimum of Cs3CeCl6·3H2O becomes less localized as a result of the increased structural dimension, making it possible for the materials to achieve an efficient electrical injection. For both Cs3CeCl6·3H2O single crystals and nanocrystals, we also observed remarkable luminescence with near-unity photoluminescence quantum yield and exceptional phase stability. Cs3CeCl6·3H2O single crystals demonstrate an X-ray scintillation light yield of 31900 photons/MeV, higher than that of commercial LuAG:Ce (22000 photons/MeV); electrically driven light-emitting diodes fabricated with Cs3CeCl6·3H2O nanocrystals yield the characteristic emission of Ce3+, indicating their potential use in next-generation violet-light-emitting devices.

5.
Phys Rev Lett ; 133(4): 046903, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39121420

ABSTRACT

We propose a new formalism and an effective computational framework to study self-trapped excitons (STEs) in insulators and semiconductors from first principles. Using the many-body Bethe-Salpeter equation in combination with perturbation theory, we are able to obtain the mode- and momentum-resolved exciton-phonon coupling matrix element in a perturbative scheme and explicitly solve the real space localization of the electron (hole), as well as the lattice distortion. Further, this method allows us to compute the STE potential energy surface and evaluate the STE formation energy and Stokes shift. We demonstrate our approach using two-dimensional magnetic semiconductor chromium trihalides and a wide-gap insulator BeO, the latter of which features dark excitons, and make predictions of their Stokes shift and coherent phonon generation which we hope will spark future experiments such as photoluminescence and transient absorption studies.

6.
Phys Chem Chem Phys ; 26(6): 5141-5146, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38259223

ABSTRACT

The tunable structure and other properties of organic materials suggest that they can potentially solve the shortcomings of traditional anodes such as graphite. We successfully introduced an organoboron unit into the thiophene-based polymer PBT-2 to construct a donor-acceptor polymer anode. The charge delocalization and LUMO energy level resulting from the unique structure of this material enabled good redox activity and a very stable electrochemical performance in electrochemical tests, with a reversible capacity of 262 mA h g-1 at 0.5 A g-1 and >10 000 cycles at 1 A g-1 with a decay of 0.056‰ per cycle. Accordingly, targeted structural design to overcome the shortcomings of active units such as thiophene can effectively regulate their electrochemical performance, providing a solution for the development of high-performance anode materials for use in lithium ion batteries.

7.
Angew Chem Int Ed Engl ; : e202411047, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008226

ABSTRACT

Ternary cuprous (Cu+)-based metal halides, represented by cesium copper iodide (e.g., CsCu2I3 and Cs3Cu2I5), are garnering increasing interest for light-emitting applications owing to their intrinsically high photoluminescence quantum yield and direct bandgap. Toward electrically driven light-emitting diodes (LEDs), it is highly desirable for the light emitters to have a high structural dimensionality as it may favor efficient electrical injection. However, unlike lead-based halide perovskites whose light-emitting units can be facilely arranged in three-dimensional (3D) ways, to date, nearly all ternary Cu+-based metal halides crystallize into 0D or 1D networks of Cu-X (X = Cl, Br, I) polyhedra, whereas 3D and even 2D structures remain mostly uncharted. Here, by employing a fluorinated organic cation, we report a new kind of ternary Cu+-based metal halides, (DFPD)CuX2 (DFPD+ = 4,4-difluoropiperidinium), which exhibits unique 2D layered crystal structure. Theoretical calculations reveal a highly dispersive conduction band of (DFPD)CuBr2, which is beneficial for charge carrier injection. It is also of particular significance to find that the 2D (DFPD)CuBr2 crystals show appealing properties, including improved ambient stability and an efficient warm white-light emission, making it a promising candidate for single-component lighting and display applications.

9.
Sci Rep ; 14(1): 12687, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830988

ABSTRACT

Underwater object detection based on side-scan sonar (SSS) suffers from a lack of finely annotated data. This study aims to avoid the laborious task of annotation by achieving unsupervised underwater object detection through domain-adaptive object detection (DAOD). In DAOD, there exists a conflict between feature transferability and discriminability, suppressing the detection performance. To address this challenge, a domain collaborative bridging detector (DCBD) including intra-domain consistency constraint (IDCC) and domain collaborative bridging (DCB), is proposed. On one hand, previous static domain labels in adversarial-based methods hinder the domain discriminator from discerning subtle intra-domain discrepancies, thus decreasing feature transferability. IDCC addresses this by introducing contrastive learning to refine intra-domain similarity. On the other hand, DAOD encourages the feature extractor to extract domain-invariant features, overlooking potential discriminative signals embedded within domain attributes. DCB addresses this by complementing domain-invariant features with domain-relevant information, thereby bolstering feature discriminability. The feasibility of DCBD is validated using unlabeled underwater shipwrecks as a case study. Experiments show that our method achieves accuracy comparable to fully supervised methods in unsupervised SSS detection (92.16% AP50 and 98.50% recall), and achieves 52.6% AP50 on the famous benchmark dataset Foggy Cityscapes, exceeding the original state-of-the-art by 4.5%.

10.
ACS Appl Mater Interfaces ; 16(1): 1451-1460, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38112199

ABSTRACT

Hydrogels with excellent mechanical flexibility are widely used in flexible electronic devices. However, it is difficult to meet further applications of high-power integrated flexible electronics as a result of their low thermal conductivity. Herein, highly thermally conductive composite hydrogels with a solid-liquid interpenetrating thermal conductivity network are constructed by aromatic polyamide nanofibers (ANF) and fluorinated graphene (FG) reinforced poly(vinyl alcohol) (PVA) and cross-linked by tannic acid (TA) solution immersion to obtain a hydrogel with a double cross-linked network. The PVA-ANF-FG3T-11.1% composite hydrogel exhibits good mechanical properties compared to PVA-ANFT, with a tensile modulus of up to 0.89 MPa, a tensile strength of up to 1.23 MPa, and an energy of rupture of up to 3.45 MJ cm-3, which is mainly attributed to the multihydrogen bonding interactions in the composite hydrogel. In addition, the friction coefficient of the PVA-ANF-FG3T-11.1% composite hydrogel is 0.178, making it suitable for use in high-friction coefficient applications. The thermal conductivity of the PVA-ANF-FG3T-11.1% composite hydrogel is 1.42 W m-1 K-1, which is attributed to the synergistic effect of the solid thermal conductivity network and the liquid convection network, resulting in a high thermal conductivity of the composite hydrogel. The high thermal conductivity of the PVA-ANF-FG3T-11.1% composite hydrogel shows great potential for flexible wearable electronics and cooling paste applications.

11.
Carbohydr Polym ; 333: 121951, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494216

ABSTRACT

Passive daytime radiative cooling (PDRC) as a zero-energy-consumption cooling technique offers rich opportunities in reducing global energy consumption and mitigating CO2 emissions. Developing high-performance PDRC coolers with practical applicability based on sustainable materials is of great significance, but remains a big challenge. Herein, polyvinyl alcohol (PVA) and esterified cellulose (EC) extracted from sawdust were used as raw materials to construct foams by using a dual-crosslinking assisted-unidirectional freeze-drying strategy followed by hydrophobic surface modification. The resultant PVA/EC (PEC) foams with ideal hierarchical macropore structure displayed various excellent features, such as low thermal conductivity (26.2 mW·m-1·K-1), high solar reflectance (95 %) and infrared emissivity (0.97), superhydrophobicity as well as high mechanical properties. The features allowed the PEC foams to be used as radiative coolers with excellent PDRC performance and thermal insulating materials. A maximum sub-ambient temperature drops of 10.2 °C could be achieved for optimal PEC foams. Building simulations indicated that PEC foams could save 55.8 % of the energy consumption for Xi'an. Our work would give inspiration for designing various types of PDRC coolers, including but certainly not limited to foams-based radiative coolers.

12.
RSC Adv ; 14(10): 7215-7220, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38419680

ABSTRACT

Polymer electrodes are drawing widespread attention to the future generation of lithium-ion battery materials. However, weak electrochemical performance of organic anode materials still exists, such as low capacity, low rate performance, and low cyclability. Herein, we successfully constructed a donor-acceptor thiophene-based polymer (PBT-1) by introducing an organoboron unit. The charge delocalization and lower LUMO energy level due to the unique structure enabled good performance in electrochemical tests with a reversible capacity of 405 mA h g-1 at 0.5 A g-1 and over 10 000 cycles at 1 A g-1. Moreover, electron paramagnetic resonance (EPR) spectra revealed that the unique stable spin system in the PBT-1 backbone during cycling provides a fundamental explanation for the highly stable electrochemical performance. This work offers a reliable reference for the design of organic anode materials and expands the potential application directions of organoboron chemistry.

13.
Genes (Basel) ; 15(4)2024 04 17.
Article in English | MEDLINE | ID: mdl-38674435

ABSTRACT

In gene quantification and expression analysis, issues with sample selection and processing can be serious, as they can easily introduce irrelevant variables and lead to ambiguous results. This study aims to investigate the extent and mechanism of the impact of sample selection and processing on ribonucleic acid (RNA) sequencing. RNA from PBMCs and blood samples was investigated in this study. The integrity of this RNA was measured under different storage times. All the samples underwent high-throughput sequencing for comprehensive evaluation. The differentially expressed genes and their potential functions were analyzed after the samples were placed at room temperature for 0h, 4h and 8h, and different feature changes in these samples were also revealed. The sequencing results showed that the differences in gene expression were higher with an increased storage time, while the total number of genes detected did not change significantly. There were five genes showing gradient patterns over different storage times, all of which were protein-coding genes that had not been mentioned in previous studies. The effect of different storage times on seemingly the same samples was analyzed in this present study. This research, therefore, provides a theoretical basis for the long-term consideration of whether sample processing should be adequately addressed.


Subject(s)
High-Throughput Nucleotide Sequencing , RNA , Sequence Analysis, RNA , Humans , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, RNA/methods , RNA/genetics , RNA/blood , Leukocytes, Mononuclear/metabolism , Gene Expression Profiling/methods , Male , Specimen Handling/methods , Blood Specimen Collection/methods , Female
14.
J Hazard Mater ; 476: 135091, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38959828

ABSTRACT

The relative severity between chromium (Cr)-mediated ecotoxicity and its bioaccumulation has rarely been compared and evaluated. This study employed pot incubation experiments to simulate the soil environment with increased Cr pollution and study their effects on the growth of crops, including pepper, lettuce, wheat, and rice. Results showed that increasing total Cr presented ascendant ecotoxicity in upland soils when pH > 7.5, and significantly reduced the yield of pepper, lettuce and wheat grain by 0.3-100 %, whereas, this effect was weakened even reversed as the pH decreased. Surprisingly, a series of soils with Cr concentration of 22.7-623.5 mg kg-1 did not cause Cr accumulation in four crops over the Chinese permissible limit. The toxicity of Cr was highly associated with extractable Cr, where Cr (VI) made the greater contributions than Cr (III). Conclusively, the ecotoxicity of Cr poses a greater environmental issue as compared to the bioaccumulation of Cr in crops in upland soils, while extractable Cr (VI) makes the predominant contributions to the ecotoxicity of Cr as the total Cr increased. Our study proposes a synchronous consideration involving total Cr and Cr (VI) as the theoretical basis to establish a more reliable soil quality standard for safe production in China.


Subject(s)
Chromium , Crops, Agricultural , Soil Pollutants , Chromium/toxicity , Soil Pollutants/toxicity , Crops, Agricultural/growth & development , Crops, Agricultural/drug effects , Crops, Agricultural/metabolism , Agriculture , Soil/chemistry , China
15.
Front Neurol ; 15: 1357476, 2024.
Article in English | MEDLINE | ID: mdl-38654739

ABSTRACT

Objectives: Spinal muscular atrophy (SMA) is an autosomal recessive disease that is one of the most common in childhood neuromuscular disorders. Our screenings are more meaningful programs in preventing birth defects, providing a significant resource for healthcare professionals, genetic counselors, and policymakers involved in designing strategies to prevent and manage SMA. Method: We screened 39,647 participants from 2020 to the present by quantitative real-time PCR, including 7,231 pre-pregnancy participants and 32,416 pregnancy participants, to detect the presence of SMN1 gene EX7 and EX8 deletion in the DNA samples provided by the subjects. To validate the accuracy of our findings, we also utilized the Multiplex Ligation-dependent Probe Amplification (MLPA) to confirm the reliability of screening results obtained by quantitative real-time PCR. Result: Among the 39,647 participants who were screened, 726 participants were the carriers of SMN1. The overall carrier rate was calculated to be 1.83% (95% confidence interval: 0.86-2.8%). After undergoing screening, a total of 592 pregnancy carriers were provided with genetic counseling and only 503 of their spouses (84.97, 95% confidence interval: 82.09-87.85%) voluntarily underwent SMA screening. Conclusion: This study provides crucial insights into the prevalence and distribution of SMA carriers among the female population. The identification of 726 asymptomatic carriers highlights the necessity of comprehensive screening programs to identify at-risk individuals and ensure appropriate interventions are in place to minimize the impact of SMA-related conditions.

16.
Anal Chim Acta ; 1296: 342331, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38401939

ABSTRACT

BACKGROUND: The cell-free RNA (cf-RNA) of spent embryo medium (SEM) has aroused a concern of academic and clinical researchers for its potential use in non-invasive embryo screening. However, comprehensive characterization of cf-RNA from SEM still presents significant technical challenges, primarily due to the limited volume of SEM. Hence, there is urgently need to a small input liquid volume and ultralow amount of cf-RNA library preparation method to unbiased cf-RNA sequencing from SEM. (75) RESULT: Here, we report a high sensitivity agarose amplification-based cf-RNA sequencing method (SEM-Acf) for human preimplantation SEM cf-RNA analysis. It is a cf-RNA sequencing library preparation method by adding agarose amplification. The agarose amplification sensitivity (0.005 pg) and efficiency (105.35 %) were increased than that of without agarose addition (0.45 pg and 96.06 %) by âˆ¼ 90 fold and 9.29 %, respectively. Compared with SMART sequencing (SMART-seq), the correlation of gene expression was stronger in different SEM samples by using SEM-Acf. The cf-RNA number of detected and coverage uniformity of 3' end were significantly increased. The proportion of 5' end adenine, alternative splicing events and short fragments (<400 bp) were increased. It is also found that 4-mer end motifs of cf-RNA fragments was significantly differences between different embryonic stage by day3 spent cleavage medium and day5/6 spent blastocyst medium. (141) SIGNIFICANCE: This study established an efficient SEM amplification and library preparation method. Additionally, we successfully described the characterizations of SEM cf-RNA in preimplantation embryo using SEM-Acf, including expression features and fragment lengths. SEM-Acf facilitates the exploration of cf-RNA as a noninvasive embryo screening biomarker, and opens up potential clinical utilities of small input liquid volume and ultralow amount cf-RNA sequencing. (59).


Subject(s)
Cell-Free Nucleic Acids , Preimplantation Diagnosis , Pregnancy , Female , Humans , Preimplantation Diagnosis/methods , Sepharose , Blastocyst/metabolism , RNA/genetics , RNA/metabolism
17.
Nat Commun ; 15(1): 4586, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811589

ABSTRACT

Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2H-MoS2. The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon A2u. Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations.

18.
iScience ; 26(12): 108532, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38144457

ABSTRACT

In prolonged liver injury, hepatocytes undergo partial identity loss with decreased regenerative capacity, resulting in liver failure. Here, we identified a five compound (5C) combination that could restore hepatocyte identity and reverse the damage-associated phenotype (e.g., dysfunction, senescence, epithelial to mesenchymal transition, growth arrest, and pro-inflammatory gene expression) in damaged hepatocytes (dHeps) from CCl4-induced mice with chronic liver injury, resembling a direct chemical reprogramming approach. Systemic administration of 5C in mice with chronic liver injury promoted hepatocyte regeneration, improved liver function, and ameliorated liver fibrosis. The hepatocyte-associated transcriptional networks were reestablished with chemical treatment as revealed by motif analysis of ATAC-seq, and a hepatocyte-enriched transcription factor, Foxa2, was found to be essential for hepatocyte revitalization. Overall, our findings indicate that the phenotype and transcriptional program of dHeps can be reprogrammed to generate functional and regenerative hepatocytes by using only small molecules, as an alternative approach to liver repair and regeneration.

19.
J Phys Chem C Nanomater Interfaces ; 127(38): 19278-19289, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-39092204

ABSTRACT

The use of powder X-ray diffraction (PXRD) coupled with lattice parameter refinement is used to investigate the crystal structure of Sn-Beta materials. A newly developed semiempirical PXRD model with a reduced tetragonal unit cell is applied to obtain the characteristic crystallographic features. There is a robust correlation between lattice parameters and the concentration of tin and defects for materials prepared via hydrothermal (HT) and postsynthetic (PT) methods. With tin incorporation, PT Sn-Beta samples, which possess a more defective structure, exhibit an extended interlayer distance in the stacking sequence and expansion of the translation symmetry within the layers, leading to larger unit cell dimensions. In contrast, HT Sn-Beta samples, having fewer defects, show a minimal effect of tin site density on the unit cell volume, whereas lattice distortion is directly correlated to the framework tin density. Furthermore, density functional theory (DFT) studies support an identical trend of lattice distortion following the monoisomorphous substitution of T sites from silicon to tin. These findings highlight that PXRD can serve as a rapid and straightforward characterization method to evaluate both framework defects and heteroatom density, offering a novel approach to monitor structural changes and the possibility to evaluate the catalytic properties of heteroatom-incorporated zeotypes.

SELECTION OF CITATIONS
SEARCH DETAIL