Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Cell ; 178(5): 1176-1188.e15, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442406

ABSTRACT

Adaptive immunity provides life-long protection by generating central and effector memory T cells and the most recently described tissue resident memory T (TRM) cells. However, the cellular origin of CD4 TRM cells and their contribution to host defense remain elusive. Using IL-17A tracking-fate mouse models, we found that a significant fraction of lung CD4 TRM cells derive from IL-17A-producing effector (TH17) cells following immunization with heat-killed Klebsiella pneumonia (Kp). These exTH17 TRM cells are maintained in the lung by IL-7, produced by lymphatic endothelial cells. During a memory response, neither antibodies, γδ T cells, nor circulatory T cells are sufficient for the rapid host defense required to eliminate Kp. Conversely, using parabiosis and depletion studies, we demonstrated that exTH17 TRM cells play an important role in bacterial clearance. Thus, we delineate the origin and function of airway CD4 TRM cells during bacterial infection, offering novel strategies for targeted vaccine design.


Subject(s)
Klebsiella Infections/immunology , Th17 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Diphtheria Toxin/pharmacology , Disease Models, Animal , Female , Immunologic Memory , Interleukin-17/genetics , Interleukin-17/metabolism , Klebsiella Infections/pathology , Klebsiella pneumoniae/immunology , Klebsiella pneumoniae/pathogenicity , Lung/drug effects , Lung/metabolism , Lung/microbiology , Mice , Mice, Inbred C57BL , Th17 Cells/cytology , Th17 Cells/metabolism
2.
Cell ; 172(4): 744-757.e17, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29398113

ABSTRACT

Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions.


Subject(s)
Cell Communication/physiology , Cell Proliferation/physiology , Fibroblasts/metabolism , Macrophages/metabolism , Animals , Cell Survival/physiology , Female , Fibroblasts/cytology , Macrophages/cytology , Male , Mice , Mice, Transgenic
3.
Cell ; 163(6): 1444-56, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26638073

ABSTRACT

The intestinal mucosal barrier controlling the resident microbiome is dependent on a protective mucus layer generated by goblet cells, impairment of which is a hallmark of the inflammatory bowel disease, ulcerative colitis. Here, we show that IL-18 is critical in driving the pathologic breakdown of barrier integrity in a model of colitis. Deletion of Il18 or its receptor Il18r1 in intestinal epithelial cells (Δ/EC) conferred protection from colitis and mucosal damage in mice. In contrast, deletion of the IL-18 negative regulator Il18bp resulted in severe colitis associated with loss of mature goblet cells. Colitis and goblet cell loss were rescued in Il18bp(-/-);Il18r(Δ/EC) mice, demonstrating that colitis severity is controlled at the level of IL-18 signaling in intestinal epithelial cells. IL-18 inhibited goblet cell maturation by regulating the transcriptional program instructing goblet cell development. These results inform on the mechanism of goblet cell dysfunction that underlies the pathology of ulcerative colitis.


Subject(s)
Colitis, Ulcerative/pathology , Colitis, Ulcerative/physiopathology , Interleukin-18/immunology , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Dextran Sulfate , Endothelial Cells/metabolism , Epithelial Cells/cytology , Female , Goblet Cells/metabolism , Goblet Cells/pathology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Interleukin-18 Receptor alpha Subunit/genetics , Interleukin-18 Receptor alpha Subunit/metabolism , Intestinal Mucosa/physiopathology , Male , Mice , Signal Transduction
4.
Mol Cell ; 81(17): 3604-3622.e10, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34358447

ABSTRACT

The transformed state in acute leukemia requires gene regulatory programs involving transcription factors and chromatin modulators. Here, we uncover an IRF8-MEF2D transcriptional circuit as an acute myeloid leukemia (AML)-biased dependency. We discover and characterize the mechanism by which the chromatin "reader" ZMYND8 directly activates IRF8 in parallel with the MYC proto-oncogene through their lineage-specific enhancers. ZMYND8 is essential for AML proliferation in vitro and in vivo and associates with MYC and IRF8 enhancer elements that we define in cell lines and in patient samples. ZMYND8 occupancy at IRF8 and MYC enhancers requires BRD4, a transcription coactivator also necessary for AML proliferation. We show that ZMYND8 binds to the ET domain of BRD4 via its chromatin reader cassette, which in turn is required for proper chromatin occupancy and maintenance of leukemic growth in vivo. Our results rationalize ZMYND8 as a potential therapeutic target for modulating essential transcriptional programs in AML.


Subject(s)
Interferon Regulatory Factors/metabolism , Leukemia, Myeloid, Acute/metabolism , Tumor Suppressor Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Chromatin/genetics , Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Interferon Regulatory Factors/genetics , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Mas , Transcription Factors/metabolism , Transcription, Genetic/genetics , Tumor Suppressor Proteins/genetics
5.
Nature ; 605(7908): 160-165, 2022 05.
Article in English | MEDLINE | ID: mdl-35477756

ABSTRACT

Colorectal cancer (CRC) is among the most frequent forms of cancer, and new strategies for its prevention and therapy are urgently needed1. Here we identify a metabolite signalling pathway that provides actionable insights towards this goal. We perform a dietary screen in autochthonous animal models of CRC and find that ketogenic diets exhibit a strong tumour-inhibitory effect. These properties of ketogenic diets are recapitulated by the ketone body ß-hydroxybutyrate (BHB), which reduces the proliferation of colonic crypt cells and potently suppresses intestinal tumour growth. We find that BHB acts through the surface receptor Hcar2 and induces the transcriptional regulator Hopx, thereby altering gene expression and inhibiting cell proliferation. Cancer organoid assays and single-cell RNA sequencing of biopsies from patients with CRC provide evidence that elevated BHB levels and active HOPX are associated with reduced intestinal epithelial proliferation in humans. This study thus identifies a BHB-triggered pathway regulating intestinal tumorigenesis and indicates that oral or systemic interventions with a single metabolite may complement current prevention and treatment strategies for CRC.


Subject(s)
Colorectal Neoplasms , Signal Transduction , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/pharmacology , Animals , Cell Proliferation , Cell Transformation, Neoplastic , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/prevention & control , Humans
6.
Nature ; 592(7852): 128-132, 2021 04.
Article in English | MEDLINE | ID: mdl-33536623

ABSTRACT

Tissue-resident innate lymphoid cells (ILCs) help sustain barrier function and respond to local signals. ILCs are traditionally classified as ILC1, ILC2 or ILC3 on the basis of their expression of specific transcription factors and cytokines1. In the skin, disease-specific production of ILC3-associated cytokines interleukin (IL)-17 and IL-22 in response to IL-23 signalling contributes to dermal inflammation in psoriasis. However, it is not known whether this response is initiated by pre-committed ILCs or by cell-state transitions. Here we show that the induction of psoriasis in mice by IL-23 or imiquimod reconfigures a spectrum of skin ILCs, which converge on a pathogenic ILC3-like state. Tissue-resident ILCs were necessary and sufficient, in the absence of circulatory ILCs, to drive pathology. Single-cell RNA-sequencing (scRNA-seq) profiles of skin ILCs along a time course of psoriatic inflammation formed a dense transcriptional continuum-even at steady state-reflecting fluid ILC states, including a naive or quiescent-like state and an ILC2 effector state. Upon disease induction, the continuum shifted rapidly to span a mixed, ILC3-like subset also expressing cytokines characteristic of ILC2s, which we inferred as arising through multiple trajectories. We confirmed the transition potential of quiescent-like and ILC2 states using in vitro experiments, single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) and in vivo fate mapping. Our results highlight the range and flexibility of skin ILC responses, suggesting that immune activities primed in healthy tissues dynamically adapt to provocations and, left unchecked, drive pathological remodelling.


Subject(s)
Immunity, Innate/immunology , Lymphocytes/immunology , Lymphocytes/pathology , Psoriasis/immunology , Psoriasis/pathology , Skin/immunology , Skin/pathology , Animals , Cell Differentiation , Cell Lineage , Chromatin/genetics , Disease Models, Animal , Female , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Interleukin-23/immunology , Latent Class Analysis , Lymphocytes/classification , Male , Mice , Psoriasis/genetics , RNA, Small Cytoplasmic/genetics , Reproducibility of Results , Time Factors
8.
Nature ; 571(7765): 403-407, 2019 07.
Article in English | MEDLINE | ID: mdl-31217581

ABSTRACT

Activated CD4 T cells proliferate rapidly and remodel epigenetically before exiting the cell cycle and engaging acquired effector functions. Metabolic reprogramming from the naive state is required throughout these phases of activation1. In CD4 T cells, T-cell-receptor ligation-along with co-stimulatory and cytokine signals-induces a glycolytic anabolic program that is required for biomass generation, rapid proliferation and effector function2. CD4 T cell differentiation (proliferation and epigenetic remodelling) and function are orchestrated coordinately by signal transduction and transcriptional remodelling. However, it remains unclear whether these processes are regulated independently of one another by cellular biochemical composition. Here we demonstrate that distinct modes of mitochondrial metabolism support differentiation and effector functions of mouse T helper 1 (TH1) cells by biochemically uncoupling these two processes. We find that the tricarboxylic acid cycle is required for the terminal effector function of TH1 cells through succinate dehydrogenase (complex II), but that the activity of succinate dehydrogenase suppresses TH1 cell proliferation and histone acetylation. By contrast, we show that complex I of the electron transport chain, the malate-aspartate shuttle and mitochondrial citrate export are required to maintain synthesis of aspartate, which is necessary for the proliferation of T helper cells. Furthermore, we find that mitochondrial citrate export and the malate-aspartate shuttle promote histone acetylation, and specifically regulate the expression of genes involved in T cell activation. Combining genetic, pharmacological and metabolomics approaches, we demonstrate that the differentiation and terminal effector functions of T helper cells are biochemically uncoupled. These findings support a model in which the malate-aspartate shuttle, mitochondrial citrate export and complex I supply the substrates needed for proliferation and epigenetic remodelling early during T cell activation, whereas complex II consumes the substrates of these pathways, which antagonizes differentiation and enforces terminal effector function. Our data suggest that transcriptional programming acts together with a parallel biochemical network to enforce cell state.


Subject(s)
Cell Differentiation , Mitochondria/metabolism , Th1 Cells/cytology , Th1 Cells/immunology , Acetylation , Animals , Aspartic Acid/metabolism , Cell Differentiation/genetics , Cell Line , Cell Proliferation/genetics , Citric Acid/metabolism , Citric Acid Cycle , Electron Transport , Female , Histones/metabolism , Humans , Lymphocyte Activation/genetics , Malates/metabolism , Male , Mice , Succinate Dehydrogenase/metabolism , Th1 Cells/metabolism , Transcription, Genetic
9.
Nature ; 564(7736): 434-438, 2018 12.
Article in English | MEDLINE | ID: mdl-30542152

ABSTRACT

The annotation of the mammalian protein-coding genome is incomplete. Arbitrary size restriction of open reading frames (ORFs) and the absolute requirement for a methionine codon as the sole initiator of translation have constrained the identification of potentially important transcripts with non-canonical protein-coding potential1,2. Here, using unbiased transcriptomic approaches in macrophages that respond to bacterial infection, we show that ribosomes associate with a large number of RNAs that were previously annotated as 'non-protein coding'. Although the idea that such non-canonical ORFs can encode functional proteins is controversial3,4, we identify a range of short and non-ATG-initiated ORFs that can generate stable and spatially distinct proteins. Notably, we show that the translation of a new ORF 'hidden' within the long non-coding RNA Aw112010 is essential for the orchestration of mucosal immunity during both bacterial infection and colitis. This work expands our interpretation of the protein-coding genome and demonstrates that proteinaceous products generated from non-canonical ORFs are crucial for the immune response in vivo. We therefore propose that the misannotation of non-canonical ORF-containing genes as non-coding RNAs may obscure the essential role of a multitude of previously undiscovered protein-coding genes in immunity and disease.


Subject(s)
Immunity, Mucosal/genetics , Open Reading Frames/genetics , Protein Biosynthesis , RNA, Long Noncoding/genetics , Animals , Bacterial Infections/genetics , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Colitis/genetics , Colitis/immunology , Colitis/metabolism , Immunity, Mucosal/drug effects , Interleukin-12/biosynthesis , Lipopolysaccharides/pharmacology , Macrophages/immunology , Macrophages/metabolism , Mice , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , RNA, Long Noncoding/metabolism , Ribosomes/drug effects , Ribosomes/metabolism , Salmonella typhimurium/immunology , Transcriptome/drug effects , Transcriptome/genetics
10.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33446502

ABSTRACT

Haematopoiesis relies on tightly controlled gene expression patterns as development proceeds through a series of progenitors. While the regulation of hematopoietic development has been well studied, the role of noncoding elements in this critical process is a developing field. In particular, the discovery of new regulators of lymphopoiesis could have important implications for our understanding of the adaptive immune system and disease. Here we elucidate how a noncoding element is capable of regulating a broadly expressed transcription factor, Ikaros, in a lymphoid lineage-specific manner, such that it imbues Ikaros with the ability to specify the lymphoid lineage over alternate fates. Deletion of the Daedalus locus, which is proximal to Ikaros, led to a severe reduction in early lymphoid progenitors, exerting control over the earliest fate decisions during lymphoid lineage commitment. Daedalus locus deletion led to alterations in Ikaros isoform expression and a significant reduction in Ikaros protein. The Daedalus locus may function through direct DNA interaction as Hi-C analysis demonstrated an interaction between the two loci. Finally, we identify an Ikaros-regulated erythroid-lymphoid checkpoint that is governed by Daedalus in a lymphoid-lineage-specific manner. Daedalus appears to act as a gatekeeper of Ikaros's broad lineage-specifying functions, selectively stabilizing Ikaros activity in the lymphoid lineage and permitting diversion to the erythroid fate in its absence. These findings represent a key illustration of how a transcription factor with broad lineage expression must work in concert with noncoding elements to orchestrate hematopoietic lineage commitment.


Subject(s)
Hematopoiesis/genetics , Ikaros Transcription Factor/genetics , Lymphopoiesis/genetics , RNA, Untranslated/genetics , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , DNA-Binding Proteins/genetics , Gene Deletion , Gene Expression Regulation, Developmental/genetics , Mice
11.
Nature ; 548(7667): 338-342, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28792938

ABSTRACT

N6-methyladenosine (m6A) is the most common and abundant messenger RNA modification, modulated by 'writers', 'erasers' and 'readers' of this mark. In vitro data have shown that m6A influences all fundamental aspects of mRNA metabolism, mainly mRNA stability, to determine stem cell fates. However, its in vivo physiological function in mammals and adult mammalian cells is still unknown. Here we show that the deletion of m6A 'writer' protein METTL3 in mouse T cells disrupts T cell homeostasis and differentiation. In a lymphopaenic mouse adoptive transfer model, naive Mettl3-deficient T cells failed to undergo homeostatic expansion and remained in the naive state for up to 12 weeks, thereby preventing colitis. Consistent with these observations, the mRNAs of SOCS family genes encoding the STAT signalling inhibitory proteins SOCS1, SOCS3 and CISH were marked by m6A, exhibited slower mRNA decay and showed increased mRNAs and levels of protein expression in Mettl3-deficient naive T cells. This increased SOCS family activity consequently inhibited IL-7-mediated STAT5 activation and T cell homeostatic proliferation and differentiation. We also found that m6A has important roles for inducible degradation of Socs mRNAs in response to IL-7 signalling in order to reprogram naive T cells for proliferation and differentiation. Our study elucidates for the first time, to our knowledge, the in vivo biological role of m6A modification in T-cell-mediated pathogenesis and reveals a novel mechanism of T cell homeostasis and signal-dependent induction of mRNA degradation.


Subject(s)
Adenosine/analogs & derivatives , Homeostasis , Interleukin-7/immunology , RNA, Messenger/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/metabolism , T-Lymphocytes/cytology , Adenosine/metabolism , Adoptive Transfer , Animals , Cell Differentiation , Cell Proliferation , Colitis/prevention & control , DNA-Binding Proteins/deficiency , Disease Models, Animal , Female , Male , Methylation , Methyltransferases/deficiency , Mice , RNA Stability , RNA, Messenger/chemistry , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling Proteins/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
12.
Immunity ; 39(1): 148-59, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23890069

ABSTRACT

Two models are proposed to explain Notch function during helper T (Th) cell differentiation. One argues that Notch instructs one Th cell fate over the other, whereas the other posits that Notch function is dictated by cytokines. Here we provide a detailed mechanistic study investigating the role of Notch in orchestrating Th cell differentiation. Notch neither instructed Th cell differentiation nor did cytokines direct Notch activity, but instead, Notch simultaneously regulated the Th1, Th2, and Th17 cell genetic programs independently of cytokine signals. In addition to regulating these programs in both polarized and nonpolarized Th cells, we identified Ifng as a direct Notch target. Notch bound the Ifng CNS-22 enhancer, where it synergized with Tbet at the promoter. Thus, Notch acts as an unbiased amplifier of Th cell differentiation. Our data provide a paradigm for Notch in hematopoiesis, with Notch simultaneously orchestrating multiple lineage programs, rather than restricting alternate outcomes.


Subject(s)
Cytokines/immunology , Receptor, Notch1/immunology , Signal Transduction/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Th2 Cells/immunology , Animals , Base Sequence , Cells, Cultured , Cytokines/metabolism , Flow Cytometry , Gene Expression/immunology , Host-Parasite Interactions/immunology , Interferon-gamma/genetics , Interferon-gamma/immunology , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Sequence Data , Protein Binding/immunology , Receptor, Notch1/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Nucleic Acid , Th1 Cells/metabolism , Th1 Cells/parasitology , Th17 Cells/metabolism , Th2 Cells/metabolism , Trichuris/immunology , Trichuris/physiology
13.
Immunity ; 38(4): 694-704, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23601684

ABSTRACT

Group 2 innate lymphoid cells (ILC2) are innate lymphocytes that confer protective type 2 immunity during helminth infection and are also involved in allergic airway inflammation. Here we report that ILC2 development required T cell factor 1 (TCF-1, the product of the Tcf7 gene), a transcription factor also implicated in T cell lineage specification. Tcf7(-/-) mice lack ILC2, and were unable to mount ILC2-mediated innate type 2 immune responses. Forced expression of TCF-1 in bone marrow progenitors partially bypassed the requirement for Notch signaling in the generation of ILC2 in vivo. TCF-1 acted through both GATA-3-dependent and GATA-3-independent pathways to promote the generation of ILC2. These results are reminiscent of the critical roles of TCF-1 in early T cell development. Hence, transcription factors that underlie early steps of T cell development are also implicated in the development of innate lymphoid cells.


Subject(s)
Asthma/immunology , Bone Marrow Cells/immunology , Hepatocyte Nuclear Factor 1-alpha/metabolism , Lymphocytes/immunology , Nippostrongylus/immunology , Strongylida Infections/immunology , Animals , Cell Differentiation , Cell Lineage , Cells, Cultured , Hepatocyte Nuclear Factor 1-alpha/genetics , Immunity, Innate , Lymphoid Progenitor Cells/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/genetics , Transgenes/genetics
14.
Nature ; 537(7619): 239-243, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27525555

ABSTRACT

Neutrophils, eosinophils and 'classical' monocytes collectively account for about 70% of human blood leukocytes and are among the shortest-lived cells in the body. Precise regulation of the lifespan of these myeloid cells is critical to maintain protective immune responses and minimize the deleterious consequences of prolonged inflammation. However, how the lifespan of these cells is strictly controlled remains largely unknown. Here we identify a long non-coding RNA that we termed Morrbid, which tightly controls the survival of neutrophils, eosinophils and classical monocytes in response to pro-survival cytokines in mice. To control the lifespan of these cells, Morrbid regulates the transcription of the neighbouring pro-apoptotic gene, Bcl2l11 (also known as Bim), by promoting the enrichment of the PRC2 complex at the Bcl2l11 promoter to maintain this gene in a poised state. Notably, Morrbid regulates this process in cis, enabling allele-specific control of Bcl2l11 transcription. Thus, in these highly inflammatory cells, changes in Morrbid levels provide a locus-specific regulatory mechanism that allows rapid control of apoptosis in response to extracellular pro-survival signals. As MORRBID is present in humans and dysregulated in individuals with hypereosinophilic syndrome, this long non-coding RNA may represent a potential therapeutic target for inflammatory disorders characterized by aberrant short-lived myeloid cell lifespan.


Subject(s)
Bcl-2-Like Protein 11/genetics , Myeloid Cells/cytology , Myeloid Cells/metabolism , RNA, Long Noncoding/genetics , Alleles , Animals , Antigens, Ly/metabolism , Apoptosis , Bcl-2-Like Protein 11/biosynthesis , Cell Survival , Down-Regulation , Eosinophils/cytology , Eosinophils/metabolism , Female , Humans , Male , Mice , Monocytes/cytology , Monocytes/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Promoter Regions, Genetic
15.
Proc Natl Acad Sci U S A ; 111(46): E4946-53, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25369933

ABSTRACT

Notch is needed for T-cell development and is a common oncogenic driver in T-cell acute lymphoblastic leukemia. The protooncogene c-Myc (Myc) is a critical target of Notch in normal and malignant pre-T cells, but how Notch regulates Myc is unknown. Here, we identify a distal enhancer located >1 Mb 3' of human and murine Myc that binds Notch transcription complexes and physically interacts with the Myc proximal promoter. The Notch1 binding element in this region activates reporter genes in a Notch-dependent, cell-context-specific fashion that requires a conserved Notch complex binding site. Acute changes in Notch activation produce rapid changes in H3K27 acetylation across the entire enhancer (a region spanning >600 kb) that correlate with Myc expression. This broad Notch-influenced region comprises an enhancer region containing multiple domains, recognizable as discrete H3K27 acetylation peaks. Leukemia cells selected for resistance to Notch inhibitors express Myc despite epigenetic silencing of enhancer domains near the Notch transcription complex binding sites. Notch-independent expression of Myc in resistant cells is highly sensitive to inhibitors of bromodomain containing 4 (Brd4), a change in drug sensitivity that is accompanied by preferential association of the Myc promoter with more 3' enhancer domains that are strongly dependent on Brd4 for function. These findings indicate that altered long-range enhancer activity can mediate resistance to targeted therapies and provide a mechanistic rationale for combined targeting of Notch and Brd4 in leukemia.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Leukemic/genetics , Genes, myc , Neoplasm Proteins/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Receptor, Notch1/metabolism , Animals , Base Sequence , Cell Cycle Proteins , Cell Line, Tumor , Chromatin Immunoprecipitation , Genes, Reporter , Genome-Wide Association Study , Histones/metabolism , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Models, Molecular , Molecular Sequence Data , Neoplasm Proteins/metabolism , Nuclear Proteins/antagonists & inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Promoter Regions, Genetic/genetics , Protein Conformation , Receptor, Notch1/antagonists & inhibitors , Sequence Alignment , Sequence Homology, Nucleic Acid , Transcription Factors/antagonists & inhibitors , Transcription, Genetic
16.
Blood ; 120(7): 1349-50, 2012 Aug 16.
Article in English | MEDLINE | ID: mdl-22899471

ABSTRACT

In this issue of Blood,Wong et al present evidence that the Notch and phosphatidylinositol-3-kinase (PI3K) pathways cross-talk through a Hes1­phosphatase and tensin homolog (PTEN) axis during normal T-cell development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Homeodomain Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Thymocytes/cytology , Thymocytes/enzymology , Animals , Transcription Factor HES-1
17.
Sci Immunol ; 9(93): eadj7238, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489349

ABSTRACT

Adaptive immunity requires the expansion of high-affinity lymphocytes from a heterogeneous pool. Whereas current models explain this through signal transduction, we hypothesized that antigen affinity tunes discrete metabolic pathways to license clonal lymphocyte dynamics. Here, we identify nicotinamide adenine dinucleotide (NAD) biosynthesis as a biochemical hub for the T cell receptor affinity-dependent metabolome. Through this central anabolic role, we found that NAD biosynthesis governs a quiescence exit checkpoint, thereby pacing proliferation. Normalizing cellular NAD(H) likewise normalizes proliferation across affinities, and enhancing NAD biosynthesis permits the expansion of lower affinity clones. Furthermore, single-cell differences in NAD(H) could predict division potential for both T and B cells, before the first division, unmixing proliferative heterogeneity. We believe that this supports a broader paradigm in which complex signaling networks converge on metabolic pathways to control single-cell behavior.


Subject(s)
Lymphocytes , NAD , Lymphocytes/metabolism , Metabolome , Signal Transduction
18.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798553

ABSTRACT

Lymphocyte activation involves a transition from quiescence and associated catabolic metabolism to a metabolic state with noted similarities to cancer cells such as heavy reliance on aerobic glycolysis for energy demands and increased nutrient requirements for biomass accumulation and cell division 1-3 . Following antigen receptor ligation, lymphocytes require spatiotemporally distinct "second signals". These include costimulatory receptor or cytokine signaling, which engage discrete programs that often involve remodeling of organelles and increased nutrient uptake or synthesis to meet changing biochemical demands 4-6 . One such signaling molecule, IL-4, is a highly pleiotropic cytokine that was first identified as a B cell co-mitogen over 30 years ago 7 . However, how IL-4 signaling mechanistically supports B cell proliferation is incompletely understood. Here, using single cell RNA sequencing we find that the cholesterol biosynthetic program is transcriptionally upregulated following IL-4 signaling during the early B cell response to influenza virus infection, and is required for B cell activation in vivo . By limiting lipid availability in vitro , we determine cholesterol to be essential for B cells to expand their endoplasmic reticulum, progress through cell cycle, and proliferate. In sum, we demonstrate that the well-known ability of IL-4 to act as a B cell growth factor is through a previously unknown rewiring of specific lipid anabolic programs, relieving sensitivity of cells to environmental nutrient availability.

19.
Blood ; 116(23): 4948-57, 2010 Dec 02.
Article in English | MEDLINE | ID: mdl-20805362

ABSTRACT

Tribbles homolog 2 (Trib2) is a pseudokinase that induces acute myelogenous leukemia (AML) in mice and is highly expressed in a subset of human AML. Trib2 has 3 distinct regions, a proline-rich N-terminus, a serine/threonine kinase homology domain, and a C-terminal constitutive photomorphogenesis 1 (COP1)-binding domain. We performed a structure-function analysis of Trib2 using in vitro and in vivo assays. The N-terminus was not required for Trib2-induced AML. Deletion or mutation of the COP1-binding site abrogated the ability of Trib2 to degrade CCAAT/enhancer-binding protein-α (C/EBP-α), block granulocytic differentiation, and to induce AML in vivo. Furthermore, COP1 knockdown inhibited the ability of Trib2 to degrade C/EBP-α, showing that it is important for mediating Trib2 activity. We also show that the Trib2 kinase domain is essential for its function. Trib2 contains variant catalytic loop sequences, compared with conventional kinases, that we show are necessary for Trib2 activity. The kinase domain mutants bind, but cannot efficiently degrade, C/EBP-α. Together, our data demonstrate that Trib2 can bind both COP1 and C/EBP-α, leading to degradation of C/EBP-α. Identification of the functional regions of Trib2 that are essential to its oncogenic role provides the basis for developing inhibitors that will block Trib functions in cancer.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cell Transformation, Neoplastic/chemistry , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Blotting, Western , Cell Separation , Cell Transformation, Neoplastic/metabolism , Flow Cytometry , Humans , Immunoprecipitation , Mice , Protein Structure, Tertiary , Structure-Activity Relationship
20.
J Virol ; 83(8): 3486-95, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19153238

ABSTRACT

APOBEC3 proteins are important cellular factors that restrict infection by a number of viruses, including human immunodeficiency virus type 1 (HIV-1). Previously, we found that the mouse APOBEC3 (mA3) restricts infection by mouse mammary tumor virus (MMTV) in its natural host. Dendritic cells (DCs) are the first in vivo targets of MMTV infection. In this study, we demonstrate that mA3 expressed in target cells restricts MMTV infection in DCs ex vivo and in vivo. By comparing infection of DCs from mA3(+/+) and mA3(-/-) mice with one-hit viruses, we show that mA3 expression in target cells blocked MMTV infection at a postentry step and acted together with virion-packaged mA3 to inhibit infection. Similar results were obtained upon infection of mouse DCs with HIV-1 cores pseudotyped with vesicular stomatitis virus G protein. In addition, treatment of cells or mice with lipopolysaccharide (LPS) caused increased levels of mA3 expression and rendered them resistant to MMTV infection. Alpha interferon treatment had a similar effect. This LPS-induced resistance to infection was seen only in mA3(+/+) mice and not in mA3(-/-) mice, arguing that mA3 is the major anti-MMTV restriction factor that is induced upon DC maturation. Thus, increasing the levels of this intrinsic antiretroviral factor in vivo can lead to increased levels of restriction because of higher levels of both cell-intrinsic as well as virion-packaged APOBEC3.


Subject(s)
Cytidine Deaminase/immunology , Dendritic Cells/immunology , Dendritic Cells/virology , Mammary Tumor Virus, Mouse/immunology , Retroviridae Infections/immunology , Animals , Cytidine Deaminase/deficiency , HIV-1/genetics , HIV-1/growth & development , Interferon-alpha/immunology , Lipopolysaccharides/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Vesiculovirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL