Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Nature ; 550(7677): 481-486, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29045389

ABSTRACT

Ubiquitination controls the stability of most cellular proteins, and its deregulation contributes to human diseases including cancer. Deubiquitinases remove ubiquitin from proteins, and their inhibition can induce the degradation of selected proteins, potentially including otherwise 'undruggable' targets. For example, the inhibition of ubiquitin-specific protease 7 (USP7) results in the degradation of the oncogenic E3 ligase MDM2, and leads to re-activation of the tumour suppressor p53 in various cancers. Here we report that two compounds, FT671 and FT827, inhibit USP7 with high affinity and specificity in vitro and within human cells. Co-crystal structures reveal that both compounds target a dynamic pocket near the catalytic centre of the auto-inhibited apo form of USP7, which differs from other USP deubiquitinases. Consistent with USP7 target engagement in cells, FT671 destabilizes USP7 substrates including MDM2, increases levels of p53, and results in the transcription of p53 target genes, induction of the tumour suppressor p21, and inhibition of tumour growth in mice.


Subject(s)
Piperidines/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Animals , Apoenzymes/antagonists & inhibitors , Apoenzymes/chemistry , Apoenzymes/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Female , Humans , Mice , Models, Molecular , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/pathology , Piperidines/chemical synthesis , Proto-Oncogene Proteins c-mdm2/chemistry , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrazoles/chemical synthesis , Pyrimidines/chemical synthesis , Substrate Specificity , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/metabolism , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitin-Specific Peptidase 7/metabolism , Ubiquitination/drug effects , Xenograft Model Antitumor Assays
2.
Bioorg Med Chem Lett ; 29(8): 1001-1006, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30803804

ABSTRACT

The discovery, structure-activity relationships, and optimization of a novel class of fatty acid synthase (FASN) inhibitors is reported. High throughput screening identified a series of substituted piperazines with structural features that enable interactions with many of the potency-driving regions of the FASN KR domain binding site. Derived from this series was FT113, a compound with potent biochemical and cellular activity, which translated into excellent activity in in vivo models.


Subject(s)
Fatty Acid Synthases/antagonists & inhibitors , Piperazines/chemistry , Administration, Oral , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Fatty Acid Synthases/metabolism , Half-Life , Humans , Malonyl Coenzyme A/metabolism , Mice , Mice, Nude , Molecular Docking Simulation , Neoplasms/drug therapy , Neoplasms/metabolism , Piperazines/administration & dosage , Piperazines/pharmacokinetics , Piperazines/pharmacology , Protein Structure, Tertiary , Rats , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 25(3): 529-41, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25556090

ABSTRACT

Herein we report the optimization efforts to ameliorate the potent CYP3A4 time-dependent inhibition (TDI) and low aqueous solubility exhibited by a previously identified lead compound from our NAMPT inhibitor program (1, GNE-617). Metabolite identification studies pinpointed the imidazopyridine moiety present in 1 as the likely source of the TDI signal, and replacement with other bicyclic systems was found to reduce or eliminate the TDI finding. A strategy of reducing the number of aromatic rings and/or lowering cLogD7.4 was then employed to significantly improve aqueous solubility. These efforts culminated in the discovery of 42, a compound with no evidence of TDI, improved aqueous solubility, and robust efficacy in tumor xenograft studies.


Subject(s)
Cytochrome P-450 CYP3A/chemistry , Enzyme Inhibitors/chemistry , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Animals , Binding Sites , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Proliferation/drug effects , Crystallography, X-Ray , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors/chemistry , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/toxicity , Dogs , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Female , Half-Life , Humans , Kinetics , Madin Darby Canine Kidney Cells , Mice , Mice, Nude , Molecular Dynamics Simulation , Neoplasms/drug therapy , Neoplasms/pathology , Nicotinamide Phosphoribosyltransferase/metabolism , Protein Binding , Protein Structure, Tertiary , Pyrimidines/chemistry , Pyrimidines/therapeutic use , Pyrimidines/toxicity , Solubility , Structure-Activity Relationship , Thermodynamics , Transplantation, Heterologous , Water/chemistry
4.
Bioorg Med Chem Lett ; 24(1): 337-43, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24279990

ABSTRACT

A co-crystal structure of amide-containing compound (4) in complex with the nicotinamide phosphoribosyltransferase (Nampt) protein and molecular modeling were utilized to design and discover a potent novel cyanoguanidine-containing inhibitor bearing a sulfone moiety (5, Nampt Biochemical IC50=2.5nM, A2780 cell proliferation IC50=9.7nM). Further SAR exploration identified several additional cyanoguanidine-containing compounds with high potency and good microsomal stability. Among these, compound 15 was selected for in vivo profiling and demonstrated good oral exposure in mice. It also exhibited excellent in vivo antitumor efficacy when dosed orally in an A2780 ovarian tumor xenograft model. The co-crystal structure of this compound in complex with the NAMPT protein was also determined.


Subject(s)
Antineoplastic Agents/pharmacology , Cytokines/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Neoplasms, Experimental/drug therapy , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Ovarian Neoplasms/drug therapy , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cytokines/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Female , Guanidines/administration & dosage , Guanidines/chemistry , Humans , Mice , Models, Molecular , Molecular Structure , Nicotinamide Phosphoribosyltransferase/metabolism , Structure-Activity Relationship , Xenograft Model Antitumor Assays
5.
Bioorg Med Chem Lett ; 23(17): 4875-85, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23899614

ABSTRACT

Potent nicotinamide phosphoribosyltransferase (NAMPT) inhibitors containing 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-derived ureas were identified using structure-based design techniques. The new compounds displayed improved aqueous solubilities, determined using a high-throughput solubility assessment, relative to previously disclosed urea and amide-containing NAMPT inhibitors. An optimized 2,3-dihydro-1H-pyrrolo[3,4-c]pyridine-derived compound exhibited potent anti-NAMPT activity (18; BC NAMPT IC50 = 11 nM; PC-3 antiproliferative IC50 = 36 nM), satisfactory mouse PK properties, and was efficacious in a PC-3 mouse xenograft model. The crystal structure of another optimized compound (29; NAMPT IC50 = 10nM; A2780 antiproliferative IC50 = 7 nM) in complex with the NAMPT protein was also determined.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cytokines/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Pyridines/chemistry , Pyridines/therapeutic use , Urea/chemistry , Urea/therapeutic use , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cytokines/metabolism , Humans , Mice , Mice, Nude , Models, Molecular , Neoplasms/drug therapy , Neoplasms/enzymology , Nicotinamide Phosphoribosyltransferase/metabolism , Pyridines/pharmacokinetics , Pyridines/pharmacology , Structure-Activity Relationship , Urea/pharmacokinetics , Urea/pharmacology
6.
Bioorg Med Chem Lett ; 23(12): 3531-8, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23668988

ABSTRACT

Potent, reversible inhibition of the cytochrome P450 CYP2C9 isoform was observed in a series of urea-containing nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. This unwanted property was successfully removed from the described inhibitors through a combination of structure-based design and medicinal chemistry activities. An optimized compound which did not inhibit CYP2C9 exhibited potent anti-NAMPT activity (17; BC NAMPT IC50=3 nM; A2780 antiproliferative IC50=70 nM), good mouse PK properties, and was efficacious in an A2780 mouse xenograft model. The crystal structure of this compound in complex with the NAMPT protein is also described.


Subject(s)
Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Urea/analogs & derivatives , Urea/pharmacology , Animals , Aryl Hydrocarbon Hydroxylases/chemistry , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP2C9 , Humans , Mice , Mice, Inbred BALB C , Nicotinamide Phosphoribosyltransferase/chemistry , Nicotinamide Phosphoribosyltransferase/metabolism , Urea/chemical synthesis
7.
Bioorg Med Chem Lett ; 23(20): 5488-97, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24021463

ABSTRACT

Potent, 1H-pyrazolo[3,4-b]pyridine-containing inhibitors of the human nicotinamide phosphoribosyltransferase (NAMPT) enzyme were identified using structure-based design techniques. Many of these compounds exhibited nanomolar antiproliferation activities against human tumor lines in in vitro cell culture experiments, and a representative example (compound 26) demonstrated encouraging in vivo efficacy in a mouse xenograft tumor model derived from the A2780 cell line. This molecule also exhibited reduced rat retinal exposures relative to a previously studied imidazo-pyridine-containing NAMPT inhibitor. Somewhat surprisingly, compound 26 was only weakly active in vitro against mouse and monkey tumor cell lines even though it was a potent inhibitor of NAMPT enzymes derived from these species. The compound also exhibited only minimal effects on in vivo NAD levels in mice, and these changes were considerably less profound than those produced by an imidazo-pyridine-containing NAMPT inhibitor. The crystal structures of compound 26 and the corresponding PRPP-derived ribose adduct in complex with NAMPT were also obtained.


Subject(s)
Amides/chemistry , Carboxylic Acids/chemistry , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Niacinamide/analogs & derivatives , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Pyrazoles/chemistry , Pyridines/chemistry , Sulfones/chemistry , Amides/chemical synthesis , Amides/pharmacokinetics , Animals , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Cytokines/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Female , Half-Life , Haplorhini , Humans , Mice , Mice, Nude , NAD/metabolism , Niacinamide/blood , Niacinamide/chemistry , Niacinamide/pharmacokinetics , Nicotinamide Phosphoribosyltransferase/metabolism , Protein Structure, Tertiary , Pyrazoles/blood , Pyrazoles/pharmacokinetics , Rats , Retina/drug effects , Retina/metabolism , Structure-Activity Relationship , Sulfones/blood , Sulfones/pharmacokinetics , Transplantation, Heterologous
8.
Cancer Cell ; 6(1): 33-43, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15261140

ABSTRACT

Homeostasis under hypoxic conditions is maintained through a coordinated transcriptional response mediated by the hypoxia-inducible factor (HIF) pathway and requires coactivation by the CBP and p300 transcriptional coactivators. Through a target-based high-throughput screen, we identified chetomin as a disrupter of HIF binding to p300. At a molecular level, chetomin disrupts the structure of the CH1 domain of p300 and precludes its interaction with HIF, thereby attenuating hypoxia-inducible transcription. Systemic administration of chetomin inhibited hypoxia-inducible transcription within tumors and inhibited tumor growth. These results demonstrate a therapeutic window for pharmacological attenuation of HIF activity and further establish the feasibility of disrupting a signal transduction pathway by targeting the function of a transcriptional coactivator with a small molecule.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA-Binding Proteins , Nuclear Proteins/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcription, Genetic/drug effects , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator , Carcinoma, Hepatocellular/pathology , Cell Hypoxia/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/therapy , Disulfides , E1A-Associated p300 Protein , Erythropoietin/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit , Indole Alkaloids , Liver Neoplasms/pathology , Luciferases/metabolism , Male , Mice , Mice, Nude , Nuclear Proteins/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Protein Binding/drug effects , Receptors, Aryl Hydrocarbon/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Trans-Activators/genetics , Transcription Factors/genetics , Transplantation, Heterologous , Vascular Endothelial Growth Factor A/metabolism
9.
J Med Chem ; 62(14): 6575-6596, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31199148

ABSTRACT

Mutations at the arginine residue (R132) in isocitrate dehydrogenase 1 (IDH1) are frequently identified in various human cancers. Inhibition of mutant IDH1 (mIDH1) with small molecules has been clinically validated as a promising therapeutic treatment for acute myeloid leukemia and multiple solid tumors. Herein, we report the discovery and optimization of a series of quinolinones to provide potent and orally bioavailable mIDH1 inhibitors with selectivity over wild-type IDH1. The X-ray structure of an early lead 24 in complex with mIDH1-R132H shows that the inhibitor unexpectedly binds to an allosteric site. Efforts to improve the in vitro and in vivo absorption, distribution, metabolism, and excretion (ADME) properties of 24 yielded a preclinical candidate 63. The detailed preclinical ADME and pharmacology studies of 63 support further development of quinolinone-based mIDH1 inhibitors as therapeutic agents in human trials.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Isocitrate Dehydrogenase/antagonists & inhibitors , Quinolones/chemistry , Quinolones/pharmacology , Allosteric Site/drug effects , Animals , Biological Availability , Cell Line, Tumor , Crystallography, X-Ray , Dogs , Drug Discovery , Enzyme Inhibitors/pharmacokinetics , Female , Humans , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/genetics , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Models, Molecular , Point Mutation , Quinolones/pharmacokinetics
10.
J Med Chem ; 59(18): 8345-68, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27541271

ABSTRACT

NAMPT inhibitors may show potential as therapeutics for oncology. Throughout our NAMPT inhibitor program, we found that exposed pyridines or related heterocyclic systems in the left-hand portion of the inhibitors are necessary pharmacophores for potent cellular NAMPT inhibition. However, when combined with a benzyl group in the center of the inhibitors, such pyridine-like moieties also led to consistent and potent inhibition of CYP2C9. In an attempt to reduce CYP2C9 inhibition, a parallel synthesis approach was used to identify central benzyl group replacements with increased Fsp3. A spirocyclic central motif was thus discovered that was combined with left-hand pyridines (or pyridine-like systems) to provide cellularly potent NAMPT inhibitors with minimal CYP2C9 inhibition. Further optimization of potency and ADME properties led to the discovery of compound 68, a highly potent NAMPT inhibitor with outstanding efficacy in a mouse tumor xenograft model and lacking measurable CYP2C9 inhibition at the concentrations tested.


Subject(s)
Cytochrome P-450 CYP2C9/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cytochrome P-450 CYP2C9 Inhibitors/chemistry , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Drug Discovery , Enzyme Inhibitors/therapeutic use , Female , Humans , Mice , Mice, Nude , Models, Molecular , Neoplasms/drug therapy , Nicotinamide Phosphoribosyltransferase/metabolism , Pyridines/therapeutic use
11.
J Med Chem ; 45(4): 753-7, 2002 Feb 14.
Article in English | MEDLINE | ID: mdl-11831887

ABSTRACT

Inhibitors of histone deacetylase (HDAC) have been shown to induce terminal differentiation of human tumor cell lines and to have antitumor effects in vivo. We have prepared analogues of suberoylanilide hydroxamic acid (SAHA) and trichostatin A and have evaluated them in a human HDAC enzyme inhibition assay, a p21(waf1) (p21) promoter assay, and in monolayer growth inhibition assays. One compound, 4-(dimethylamino)-N-[7-(hydroxyamino)-7-oxoheptyl]-benzamide, was found to affect the growth of a panel of eight human tumor cell lines differentially.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzamides/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors , Hydroxamic Acids/chemical synthesis , Hydroxylamines/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzamides/chemistry , Benzamides/pharmacology , Cyclin-Dependent Kinase Inhibitor p21 , Cyclins/metabolism , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Hydroxylamines/chemistry , Hydroxylamines/pharmacology , Models, Molecular , Promoter Regions, Genetic , Structure-Activity Relationship , Tumor Cells, Cultured
12.
J Med Chem ; 46(21): 4609-24, 2003 Oct 09.
Article in English | MEDLINE | ID: mdl-14521422

ABSTRACT

A series of N-hydroxy-3-phenyl-2-propenamides were prepared as novel inhibitors of human histone deacetylase (HDAC). These compounds were potent enzyme inhibitors, having IC(50)s < 400 nM in a partially purified enzyme assay. However, potency in cell growth inhibition assays ranged over 2 orders of magnitude in two human carcinoma cell lines. Selected compounds having cellular IC(50) < 750 nM were tested for maximum tolerated dose (MTD) and for efficacy in the HCT116 human colon tumor xenograft assay. Four compounds having an MTD > or = 100 mg/kg were selected for dose-response studies in the HCT116 xenograft model. One compound, 9 (NVP-LAQ824), had significant dose-related activity in the HCT116 colon and A549 lung tumor models, high MTD, and low gross toxicity. On the basis, in part, of these properties, 9 has entered human clinical trials in 2002.


Subject(s)
Acetyltransferases/antagonists & inhibitors , Acrylamides/chemical synthesis , Acrylamides/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacology , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Animals , Body Weight/drug effects , Cell Division/drug effects , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Female , Histone Acetyltransferases , Humans , Indicators and Reagents , Mice , Mice, Nude , Molecular Conformation , Neoplasm Transplantation
13.
PLoS One ; 9(10): e109366, 2014.
Article in English | MEDLINE | ID: mdl-25285661

ABSTRACT

Inhibiting NAD biosynthesis by blocking the function of nicotinamide phosphoribosyl transferase (NAMPT) is an attractive therapeutic strategy for targeting tumor metabolism. However, the development of drug resistance commonly limits the efficacy of cancer therapeutics. This study identifies mutations in NAMPT that confer resistance to a novel NAMPT inhibitor, GNE-618, in cell culture and in vivo, thus demonstrating that the cytotoxicity of GNE-618 is on target. We determine the crystal structures of six NAMPT mutants in the apo form and in complex with various inhibitors and use cellular, biochemical and structural data to elucidate two resistance mechanisms. One is the surprising finding of allosteric modulation by mutation of residue Ser165, resulting in unwinding of an α-helix that binds the NAMPT substrate 5-phosphoribosyl-1-pyrophosphate (PRPP). The other mechanism is orthosteric blocking of inhibitor binding by mutations of Gly217. Furthermore, by evaluating a panel of diverse small molecule inhibitors, we unravel inhibitor structure activity relationships on the mutant enzymes. These results provide valuable insights into the design of next generation NAMPT inhibitors that offer improved therapeutic potential by evading certain mechanisms of resistance.


Subject(s)
Antineoplastic Agents/pharmacology , Cytokines/antagonists & inhibitors , Cytokines/chemistry , Drug Resistance, Neoplasm , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/chemistry , Catalytic Domain , Cell Line, Tumor , Cytokines/genetics , Humans , Models, Molecular , Mutation , Nicotinamide Phosphoribosyltransferase/genetics
14.
J Med Chem ; 57(3): 770-92, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24405419

ABSTRACT

Potent, trans-2-(pyridin-3-yl)cyclopropanecarboxamide-containing inhibitors of the human nicotinamide phosphoribosyltransferase (NAMPT) enzyme were identified using fragment-based screening and structure-based design techniques. Multiple crystal structures were obtained of initial fragment leads, and this structural information was utilized to improve the biochemical and cell-based potency of the associated molecules. Many of the optimized compounds exhibited nanomolar antiproliferative activities against human tumor lines in in vitro cell culture experiments. In a key example, a fragment lead (13, KD = 51 µM) was elaborated into a potent NAMPT inhibitor (39, NAMPT IC50 = 0.0051 µM, A2780 cell culture IC50 = 0.000 49 µM) which demonstrated encouraging in vivo efficacy in an HT-1080 mouse xenograft tumor model.


Subject(s)
Amides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cyclopropanes/chemical synthesis , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Pyridines/chemical synthesis , Sulfones/chemical synthesis , Amides/chemistry , Amides/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Drug Screening Assays, Antitumor , Heterografts , Humans , Mice , Mice, Nude , Models, Molecular , Neoplasm Transplantation , Protein Conformation , Pyridines/chemistry , Pyridines/pharmacology , Stereoisomerism , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology
15.
J Med Chem ; 56(12): 4921-37, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23617784

ABSTRACT

Nicotinamide phosphoribosyltransferase (Nampt) is a promising anticancer target. Virtual screening identified a thiourea analogue, compound 5, as a novel highly potent Nampt inhibitor. Guided by the cocrystal structure of 5, SAR exploration revealed that the corresponding urea compound 7 exhibited similar potency with an improved solubility profile. These studies also indicated that a 3-pyridyl group was the preferred substituent at one inhibitor terminus and also identified a urea moiety as the optimal linker to the remainder of the inhibitor structure. Further SAR optimization of the other inhibitor terminus ultimately yielded compound 50 as a urea-containing Nampt inhibitor which exhibited excellent biochemical and cellular potency (enzyme IC50 = 0.007 µM; A2780 IC50 = 0.032 µM). Compound 50 also showed excellent in vivo antitumor efficacy when dosed orally in an A2780 ovarian tumor xenograft model (TGI of 97% was observed on day 17).


Subject(s)
Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Urea/chemistry , Urea/pharmacology , Humans , Inhibitory Concentration 50 , Nicotinamide Phosphoribosyltransferase/chemistry , Protein Conformation , Structure-Activity Relationship
16.
J Med Chem ; 56(16): 6413-33, 2013 Aug 22.
Article in English | MEDLINE | ID: mdl-23859118

ABSTRACT

Crystal structures of several urea- and thiourea-derived compounds in complex with the nicotinamide phosphoribosyltransferase (Nampt) protein were utilized to design a potent amide-containing inhibitor bearing an aza-indole moiety (7, Nampt BC IC50 = 9.0 nM, A2780 cell proliferation IC50 = 10 nM). The Nampt-7 cocrystal structure was subsequently obtained and enabled the design of additional amide-containing inhibitors which incorporated various other fused 6,5-heterocyclic moieties and biaryl sulfone or sulfonamide motifs. Additional modifications of these molecules afforded many potent biaryl sulfone-containing Nampt inhibitors which also exhibited favorable in vitro ADME properties (microsomal and hepatocyte stability, MDCK permeability, plasma protein binding). An optimized compound (58) was a potent inhibitor of multiple cancer cell lines (IC50 <10 nM vs U251, HT1080, PC3, MiaPaCa2, and HCT116 lines), displayed acceptable mouse PK properties (F = 41%, CL = 52.4 mL/min/kg), and exhibited robust efficacy in a U251 mouse xenograft model.


Subject(s)
Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Animals , Enzyme Inhibitors/pharmacokinetics , Magnetic Resonance Spectroscopy , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Spectrometry, Mass, Electrospray Ionization
17.
J Am Chem Soc ; 124(10): 2148-52, 2002 Mar 13.
Article in English | MEDLINE | ID: mdl-11878968

ABSTRACT

A series of alpha-substituted beta-alanine (beta) linked polyamides (DbaPyPyPy-beta*-PyPyPy) were prepared and examined. This resulted in the observation that while most substituents disrupt DNA binding, (R)-alpha-methoxy-beta-alanine (beta((R)-OMe)) maintains strong binding affinity and preferentially adopts a hairpin versus extended binding mode, providing an alternative hairpin linker to gamma-aminobutyric acid (gamma). A generalized variant of a fluorescent intercalator displacement assay conducted on a series of hairpin deoxyoligonucleotides containing a systematically varied A/T-rich binding site size was developed to distinguish between the extended binding of the parent beta-alanine 1 (DbaPyPyPy-beta-PyPyPy) and the hairpin binding of 3 (DbaPyPyPy-beta((R)-OMe)-PyPyPy).


Subject(s)
Alanine/chemistry , DNA/chemistry , Nylons/chemistry , Cross-Linking Reagents/chemistry , DNA/metabolism , Intercalating Agents/chemistry , Models, Molecular , Nucleic Acid Conformation , Nylons/chemical synthesis , Nylons/metabolism , Pyrroles/chemical synthesis , Pyrroles/chemistry , Pyrroles/metabolism
18.
Bioorg Med Chem Lett ; 12(18): 2647-50, 2002 Sep 16.
Article in English | MEDLINE | ID: mdl-12182879

ABSTRACT

A series of saturated heterocyclic analogues of distamycin were prepared and examined. A fluorescent intercalator displacement (FID) assay conducted on p[dA]-p[dT] DNA to obtain C(50) values and a hairpin deoxyoligonucleotide containing an A/T-rich binding site was used to evaluate DNA binding affinity. It is observed that saturated heterocycles greatly reduce the DNA binding relative to distamycin.


Subject(s)
DNA/metabolism , Distamycins/metabolism , Distamycins/chemical synthesis , Distamycins/chemistry
19.
J Org Chem ; 68(10): 3866-73, 2003 May 16.
Article in English | MEDLINE | ID: mdl-12737565

ABSTRACT

Four novel bisulfide bromotyrosine derivatives, psammaplins E (9), F (10), G (11), and H (12), and two new bromotyrosine derivatives, psammaplins I (13) and J (14), were isolated from the sponge Pseudoceratina purpurea, along with known psammaplins A (4), B (6), C (7), and D (8) and bisaprasin (5). The structures of psammaplins E (9) and F (10), which each contain an oxalyl group rarely found in marine organisms, were determined by spectroscopic analysis. Compounds 4, 5, and 10 are potent histone deacetylase inhibitors and also show mild cytotoxicity. Furthermore, compounds 4, 5, and 11 are potent DNA methyltransferase inhibitors. The biogenetic pathway previously proposed for the psammaplins class is also revisited.


Subject(s)
DNA Modification Methylases/antagonists & inhibitors , Disulfides/isolation & purification , Enzyme Inhibitors/isolation & purification , Histone Deacetylase Inhibitors , Porifera/chemistry , Sulfuric Acid Esters/isolation & purification , Tyrosine/analogs & derivatives , Tyrosine/isolation & purification , Animals , Disulfides/chemistry , Disulfides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Papua New Guinea , Sulfuric Acid Esters/chemistry , Sulfuric Acid Esters/pharmacology , Tyrosine/chemistry , Tyrosine/pharmacology
20.
J Biol Chem ; 278(52): 52964-71, 2003 Dec 26.
Article in English | MEDLINE | ID: mdl-14534293

ABSTRACT

LAF389 is a synthetic analogue of bengamides, a class of marine natural products that produce inhibitory effects on tumor growth in vitro and in vivo. A proteomics-based approach has been used to identify signaling pathways affected by bengamides. LAF389 treatment of cells resulted in altered mobility of a subset of proteins on two-dimensional gel electrophoresis. Detailed analysis of one of the proteins, 14-3-3gamma, showed that bengamide treatment resulted in retention of the amino-terminal methionine, suggesting that bengamides directly or indirectly inhibited methionine aminopeptidases (MetAps). Both known MetAps are inhibited by LAF389. Short interfering RNA suppression of MetAp2 also altered amino-terminal processing of 14-3-3gamma. A high resolution structure of human MetAp2 co-crystallized with a bengamide shows that the compound binds in a manner that mimics peptide substrates. Additionally, the structure reveals that three key hydroxyl groups on the inhibitor coordinate the di-cobalt center in the enzyme active site.


Subject(s)
Aminopeptidases/chemistry , Azepines/pharmacology , 14-3-3 Proteins , Aminopeptidases/antagonists & inhibitors , Aminopeptidases/genetics , Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Binding Sites , Cell Division , Cell Line, Tumor , Cloning, Molecular , Cobalt/chemistry , Crystallography, X-Ray , Cyclohexanes , Dose-Response Relationship, Drug , Electrophoresis, Gel, Two-Dimensional , Enzyme Inhibitors/pharmacology , Fatty Acids, Unsaturated/pharmacology , Glycoproteins/chemistry , Glycoproteins/genetics , Humans , Methionyl Aminopeptidases , Models, Chemical , Models, Molecular , Peptides/chemistry , Protein Binding , Protein Isoforms , Protein Structure, Tertiary , Proteome , RNA, Small Interfering/metabolism , Sesquiterpenes , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL