Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Biol Chem ; 299(11): 105323, 2023 11.
Article in English | MEDLINE | ID: mdl-37805138

ABSTRACT

Human respiratory syncytial virus (RSV) is the leading cause of infantile bronchiolitis in the developed world and of childhood deaths in resource-poor settings. The elderly and the immunosuppressed are also affected. It is a major unmet target for vaccines and antiviral drugs. RSV assembles and buds from the host cell plasma membrane by forming infectious viral particles which are mostly filamentous. A key interaction during RSV assembly is the interaction of the matrix (M) protein with cell plasma membrane lipids forming a layer at assembly sites. Although the structure of RSV M protein dimer is known, it is unclear how the viral M proteins interact with cell membrane lipids, and with which one, to promote viral assembly. Here, we demonstrate that M proteins are able to cluster at the plasma membrane by selectively binding with phosphatidylserine (PS). Our inĀ vitro studies suggest that M binds PS lipid as a dimer and upon M oligomerization, PS clustering is observed. In contrast, the presence of other negatively charged lipids like PI(4, 5)P2 does not enhance M binding beyond control zwitterionic lipids, while cholesterol negatively affects M interaction with membrane lipids. Moreover, we show that the initial binding of the RSV M protein with PS lipids is independent of the cytoplasmic tail of the fusion (F) glycoprotein (FCT). Here, we highlight that M binding on membranes occurs directly through PS lipids, this interaction is electrostatic in nature, and M oligomerization generates PS clusters.


Subject(s)
Respiratory Syncytial Virus, Human , Humans , Cell Membrane/metabolism , Membrane Lipids/metabolism , Phosphatidylserines/metabolism , Viral Fusion Proteins/metabolism , Virion/metabolism , Virus Assembly , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Cell Line, Tumor
2.
J Virol ; 96(2): e0090921, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34730389

ABSTRACT

Human metapneumovirus (HMPV) causes severe respiratory diseases in young children. The HMPV RNA genome is encapsidated by the viral nucleoprotein (N), forming an RNA-N complex (NNuc), which serves as the template for genome replication and mRNA transcription by the RNA-dependent RNA polymerase (RdRp). The RdRp is formed by the association of the large polymerase subunit (L), which has RNA polymerase, capping, and methyltransferase activities, and the tetrameric phosphoprotein (P). P plays a central role in the RdRp complex by binding to NNuc and L, allowing the attachment of the L polymerase to the NNuc template. During infection these proteins concentrate in cytoplasmic inclusion bodies (IBs) where viral RNA synthesis occurs. By analogy to the closely related pneumovirus respiratory syncytial virus (RSV), it is likely that the formation of IBs depends on the interaction between HMPV P and NNuc, which has not been demonstrated yet. Here, we finely characterized the binding P-NNuc interaction domains by using recombinant proteins, combined with a functional assay for the polymerase complex activity, and the study of the recruitment of these proteins to IBs by immunofluorescence. We show that the last 6 C-terminal residues of HMPV P are necessary and sufficient for binding to NNuc and that P binds to the N-terminal domain of N (NNTD), and we identified conserved N residues critical for the interaction. Our results allowed us to propose a structural model for the HMPV P-NNuc interaction. IMPORTANCE Human metapneumovirus (HMPV) is a leading cause of severe respiratory infections in children but also affects human populations of all ages worldwide. Currently, no vaccine or efficient antiviral treatments are available for this pneumovirus. A better understanding of the molecular mechanisms involved in viral replication could help the design or discovery of specific antiviral compounds. In this work, we have investigated the interaction between two major viral proteins involved in HMPV RNA synthesis, the N and P proteins. We finely characterized their domains of interaction and identified a pocket on the surface of the N protein, a potential target of choice for the design of compounds interfering with N-P complexes and inhibiting viral replication.


Subject(s)
Metapneumovirus/chemistry , Nucleocapsid Proteins/chemistry , Phosphoproteins/chemistry , Animals , Binding Sites , Cell Line , Cricetinae , Inclusion Bodies/metabolism , Metapneumovirus/physiology , Models, Molecular , Mutation , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Virus Replication
3.
J Virol ; 95(7)2021 03 10.
Article in English | MEDLINE | ID: mdl-33408180

ABSTRACT

It was shown previously that the Matrix (M), Phosphoprotein (P), and the Fusion (F) proteins of Respiratory syncytial virus (RSV) are sufficient to produce virus-like particles (VLPs) that resemble the RSV infection-induced virions. However, the exact mechanism and interactions among the three proteins are not known. This work examines the interaction between P and M during RSV assembly and budding. We show that M interacts with P in the absence of other viral proteins in cells using a Split Nano Luciferase assay. By using recombinant proteins, we demonstrate a direct interaction between M and P. By using Nuclear Magnetic Resonance (NMR) we identify three novel M interaction sites on P, namely site I in the αN2 region, site II in the 115-125 region, and the oligomerization domain (OD). We show that the OD, and likely the tetrameric structural organization of P, is required for virus-like filament formation and VLP release. Although sites I and II are not required for VLP formation, they appear to modulate P levels in RSV VLPs.Importance Human RSV is the commonest cause of infantile bronchiolitis in the developed world and of childhood deaths in resource-poor settings. It is a major unmet target for vaccines and anti-viral drugs. The lack of knowledge of RSV budding mechanism presents a continuing challenge for VLP production for vaccine purpose. We show that direct interaction between P and M modulates RSV VLP budding. This further emphasizes P as a central regulator of RSV life cycle, as an essential actor for transcription and replication early during infection and as a mediator for assembly and budding in the later stages for virus production.

5.
Mol Cell Proteomics ; 14(3): 532-43, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25556234

ABSTRACT

Although human respiratory syncytial virus (RSV) is the most common cause of bronchiolitis and pneumonia in infants and elderly worldwide, there is no licensed RSV vaccine or effective drug treatment available. The RSV Matrix protein plays key roles in virus life cycle, being found in the nucleus early in infection in a transcriptional inhibitory role, and later localizing in viral inclusion bodies before coordinating viral assembly and budding at the plasma membrane. In this study, we used a novel, high throughput microfluidics platform and custom human open reading frame library to identify novel host cell binding partners of RSV matrix. Novel interactors identified included proteins involved in host transcription regulation, the innate immunity response, cytoskeletal regulation, membrane remodeling, and cellular trafficking. A number of these interactions were confirmed by immunoprecipitation and cellular colocalization approaches. Importantly, the physiological significance of matrix interaction with the actin-binding protein cofilin 1, caveolae protein Caveolin 2, and the zinc finger protein ZNF502 was confirmed. siRNA knockdown of the host protein levels resulted in reduced RSV virus production in infected cells. These results have important implications for future antiviral strategies aimed at targets of RSV matrix in the host cell.


Subject(s)
Carrier Proteins/metabolism , Caveolin 2/metabolism , Cofilin 1/metabolism , Microfluidic Analytical Techniques/methods , Nuclear Proteins/metabolism , Respiratory Syncytial Viruses/physiology , Viral Matrix Proteins/metabolism , Animals , Cell Line , Cell Nucleus/metabolism , Chlorocebus aethiops , Gene Library , HEK293 Cells , Humans , Open Reading Frames , Vero Cells , Virus Replication
6.
J Virol ; 89(8): 4624-35, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25673702

ABSTRACT

UNLABELLED: Respiratory syncytial virus (RSV) infects epithelial cells of the respiratory tract and is a major cause of bronchiolitis and pneumonia in children and the elderly. The virus assembles and buds through the plasma membrane, forming elongated membrane filaments, but details of how this happens remain obscure. Oligomerization of the matrix protein (M) is a key step in the process of assembly and infectious virus production. In addition, it was suggested to affect the conformation of the fusion protein, the major current target for RSV antivirals, in the mature virus. The structure and assembly of M are thus key parameters in the RSV antiviral development strategy. The structure of RSV M was previously published as a monomer. Other paramyxovirus M proteins have been shown to dimerize, and biochemical data suggest that RSV M also dimerizes. Here, using size exclusion chromatography-multiangle laser light scattering, we show that the protein is dimeric in solution. We also crystallized M in two crystal forms and show that it assembles into equivalent dimers in both lattices. Dimerization interface mutations destabilize the M dimer in vitro. To assess the biological relevance of dimerization, we used confocal imaging to show that dimerization interface mutants of M fail to assemble into viral filaments on the plasma membrane. Additionally, budding and release of virus-like particles are prevented in M mutants that fail to form filaments. Importantly, we show that M is biologically active as a dimer and that the switch from M dimers to higher-order oligomers triggers viral filament assembly and virus production. IMPORTANCE: Human respiratory syncytial virus (RSV) is the most frequent cause of infantile bronchiolitis and pneumonia. The enormous burden of RSV makes it a major unmet target for a vaccine and antiviral drug therapy. Oligomerization of the matrix protein is a key step in the process of assembly and production of infectious virus, but the molecular mechanism of RSV assembly is still poorly understood. Here we show that the RSV matrix protein forms dimers in solution and in crystals; the dimer is essential for formation of higher-order oligomers. Destabilizing the dimer interface resulted in the loss of RSV filament formation and a lack of budding of virus-like particles. Importantly, our findings can potentially lead to new structure-based RSV inhibitors targeting the assembly process.


Subject(s)
Models, Molecular , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/physiology , Viral Matrix Proteins/metabolism , Virus Assembly/physiology , Virus Replication/physiology , Blotting, Western , Chromatography, Gel , Crystallization , Dimerization , Electrophoresis, Polyacrylamide Gel , Humans , Microscopy, Confocal , Protein Conformation , Respiratory Syncytial Viruses/metabolism , Viral Matrix Proteins/genetics
7.
J Virol ; 88(5): 2366-73, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24352438

ABSTRACT

UNLABELLED: During respiratory-virus infection, excessive lymphocyte activation can cause pathology both in acute infection and in exacerbations of chronic respiratory diseases. The costimulatory molecule CD161 is expressed on lymphocyte subsets implicated in promoting respiratory inflammation, including Th2, Th17, mucosally associated invariant T (MAIT) cells, and type 2 innate lymphoid cells. We asked whether the CD161 ligand LLT1 could be expressed on respiratory epithelial cells following respiratory-virus infection as a mechanism by which respiratory-virus infection could promote activation of proinflammatory lymphocytes. In response to respiratory syncytial virus (RSV) infection, expression of LLT1 was upregulated in the BEAS-2B respiratory epithelial cell line and primary human bronchial epithelial cells. Imaging studies revealed that LLT1 expression increased in both RSV-infected and cocultured uninfected cells, suggesting that soluble factors produced during infection stimulate LLT1 expression. TLR3 and TLR2/6 ligands led to a rapid increase in LLT1 mRNA in respiratory epithelial cells, as did the proinflammatory cytokines type I interferons, interleukin 1Ɵ (IL-1Ɵ), and tumor necrosis factor alpha (TNF-α), which are produced early in respiratory-virus infection. Immunohistochemistry confirmed the increase in LLT1 protein on the epithelial cell surface, and live-cell confocal microscopy demonstrated accumulation of epithelial LLT1 at synapses formed with CD161(+) T lymphocytes. LLT1 expression by the respiratory epithelium in response to respiratory-virus infection and inflammatory cytokines represents a novel link between innate immunity and lymphocyte activation. As a regulator of CD161(+) proinflammatory lymphocytes, LLT1 could be a novel therapeutic target in inflammation caused by respiratory-virus infection. IMPORTANCE: The immune response to respiratory-virus infection is essential for clearing the pathogen but, if excessive, can lead to tissue damage and obstruction of the airways. How viral infection activates immune cells in the lungs is not fully understood. Here, we show that LLT1 can be expressed in lung cells in response to infection. LLT1 triggers CD161, a receptor on inflammatory immune cells. This mechanism may promote activation of immune cells in the lungs in viral infection and could be a novel target for therapies aimed at reducing lung inflammation.


Subject(s)
Cytokines/metabolism , Gene Expression Regulation , Lectins, C-Type/genetics , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Receptors, Cell Surface/genetics , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Respiratory Syncytial Virus, Human/physiology , Toll-Like Receptor 3/metabolism , Cell Line , Coculture Techniques , Cytokines/pharmacology , Gene Expression Regulation/drug effects , Humans , Immunological Synapses/immunology , Inflammation Mediators/metabolism , Inflammation Mediators/pharmacology , Lectins, C-Type/metabolism , Ligands , Receptors, Cell Surface/metabolism , Respiratory Mucosa/drug effects , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Virus Replication
8.
J Biol Chem ; 287(52): 43910-26, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23105106

ABSTRACT

The endosomal sorting complex required for transport (ESCRT) pathway remodels membranes during multivesicular body biogenesis, the abscission stage of cytokinesis, and enveloped virus budding. The ESCRT-III and VPS4 ATPase complexes catalyze the membrane fission events associated with these processes, and the LIP5 protein helps regulate their interactions by binding directly to a subset of ESCRT-III proteins and to VPS4. We have investigated the biochemical and structural basis for different LIP5-ligand interactions and show that the first microtubule-interacting and trafficking (MIT) module of the tandem LIP5 MIT domain binds CHMP1B (and other ESCRT-III proteins) through canonical type 1 MIT-interacting motif (MIM1) interactions. In contrast, the second LIP5 MIT module binds with unusually high affinity to a novel MIM element within the ESCRT-III protein CHMP5. A solution structure of the relevant LIP5-CHMP5 complex reveals that CHMP5 helices 5 and 6 and adjacent linkers form an amphipathic "leucine collar" that wraps almost completely around the second LIP5 MIT module but makes only limited contacts with the first MIT module. LIP5 binds MIM1-containing ESCRT-III proteins and CHMP5 and VPS4 ligands independently in vitro, but these interactions are coupled within cells because formation of stable VPS4 complexes with both LIP5 and CHMP5 requires LIP5 to bind both a MIM1-containing ESCRT-III protein and CHMP5. Our studies thus reveal how the tandem MIT domain of LIP5 binds different types of ESCRT-III proteins, promoting assembly of active VPS4 enzymes on the polymeric ESCRT-III substrate.


Subject(s)
Endosomal Sorting Complexes Required for Transport/chemistry , Vacuolar Proton-Translocating ATPases/chemistry , ATPases Associated with Diverse Cellular Activities , Amino Acid Motifs , Animals , Cell Line , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Humans , Mice , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Rabbits , Structure-Activity Relationship , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
9.
Biomolecules ; 13(3)2023 03 05.
Article in English | MEDLINE | ID: mdl-36979414

ABSTRACT

The proteolytic active sites of the 26S proteasome are sequestered within the catalytic chamber of its 20S core particle (CP). Access to this chamber is through a narrow channel defined by the seven outer α subunits. In the resting state, the N-termini of neighboring α subunits form a gate blocking access to the channel. The attachment of the activators or regulatory particles rearranges the blocking α subunit N-termini facilitating the entry of substrates. By truncating or mutating each of the participating α N-termini, we report that whereas only a few N-termini are important for maintaining the closed gate, all seven N-termini participate in the open gate. Specifically, the open state is stabilized by a hydrogen bond between an invariant tyrosine (Y) in each subunit with a conserved aspartate (D) in its counterclockwise neighbor. The lone exception is the α1-α2 pair leaving a gap in the ring circumference. The third residue (X) of this YD(X) motif aligns with the open channel. Phenylalanine at this position in the α2 subunit comes in direct contact with the translocating substrate. Consequently, deletion of the α2 N-terminal tail attenuates proteolysis despite the appearance of an open gate state. In summary, the interlacing N-terminal YD(X) motifs regulate both the gating and translocation of the substrate.


Subject(s)
Proteasome Endopeptidase Complex , Proteasome Endopeptidase Complex/metabolism , Models, Molecular , Proteolysis
10.
J Mol Biol ; 434(19): 167763, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35907573

ABSTRACT

Human RSV is the leading cause of infantile bronchiolitis in the world and one of the major causes of childhood deaths in resource-poor settings. It is a major unmet target for vaccines and anti-viral drugs. Respiratory syncytial virus has evolved a unique strategy to evade host immune response by coding for two non-structural proteins NS1 and NS2. Recently it was shown that in infected cells, nuclear NS1 could be involved in transcription regulation of host genes linked to innate immune response, via interactions with chromatin and the Mediator complex. Here we identified the MED25 Mediator subunit as an NS1 interactor in a yeast two-hybrid screen. We demonstrate that NS1 directly interacts with MED25 in vitro and in cellula, and that this interaction involves the MED25 transactivator binding ACID domain on the one hand, and the C-terminal α3 helix of NS1, with an additional contribution of the globular domain of NS1, on the other hand. By NMR we show that the NS1 α3 sequence primarily binds to the MED25 ACID H2 face, similarly to the α-helical transactivation domains (TADs) of transcription regulators such as Herpex simplex VP16 and ATF6α, a master regulator of ER stress response activated upon viral infection. Moreover, we found out that the NS1 could compete with ATF6α TAD for binding to MED25. These findings point to a mechanism of NS1 interfering with innate immune response by impairing recruitment by cellular TADs of the Mediator via MED25 and hence transcription of specific genes by RNA polymerase II.


Subject(s)
Mediator Complex , Respiratory Syncytial Virus, Human , Trans-Activators , Viral Nonstructural Proteins , Chromatin/chemistry , Humans , Mediator Complex/chemistry , Protein Binding , Protein Domains , RNA Polymerase II/metabolism , Respiratory Syncytial Virus, Human/genetics , Trans-Activators/chemistry , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
11.
Biomolecules ; 11(8)2021 08 17.
Article in English | MEDLINE | ID: mdl-34439894

ABSTRACT

The phosphoprotein P of Mononegavirales (MNV) is an essential co-factor of the viral RNA polymerase L. Its prime function is to recruit L to the ribonucleocapsid composed of the viral genome encapsidated by the nucleoprotein N. MNV phosphoproteins often contain a high degree of disorder. In Pneumoviridae phosphoproteins, the only domain with well-defined structure is a small oligomerization domain (POD). We previously characterized the differential disorder in respiratory syncytial virus (RSV) phosphoprotein by NMR. We showed that outside of RSV POD, the intrinsically disordered N-and C-terminal regions displayed a structural and dynamic diversity ranging from random coil to high helical propensity. Here we provide additional insight into the dynamic behavior of PCα, a domain that is C-terminal to POD and constitutes the RSV L-binding region together with POD. By using small phosphoprotein fragments centered on or adjacent to POD, we obtained a structural picture of the POD-PCα region in solution, at the single residue level by NMR and at lower resolution by complementary biophysical methods. We probed POD-PCα inter-domain contacts and showed that small molecules were able to modify the dynamics of PCα. These structural properties are fundamental to the peculiar binding mode of RSV phosphoprotein to L, where each of the four protomers binds to L in a different way.


Subject(s)
Nucleoproteins/metabolism , Phosphoproteins/chemistry , Respiratory Syncytial Virus, Human/chemistry , Respiratory Syncytial Virus, Human/genetics , Viral Proteins/chemistry , Hydrogen Bonding , Light , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Scattering, Radiation , Terpenes/chemistry , X-Rays
12.
Curr Biol ; 13(13): 1140-4, 2003 Jul 01.
Article in English | MEDLINE | ID: mdl-12842014

ABSTRACT

During prolonged starvation, yeast cells enter a stationary phase (SP) during which the synthesis of many proteins is dramatically decreased. We show that a parallel decrease in proteasome-dependent proteolysis also occurs. The reduction in proteolysis is correlated with disassembly of 26S proteasome holoenzymes into their 20S core particle (CP) and 19S regulatory particle (RP) components. Proteasomes are reassembled, and proteolysis resumes prior to cell cycle reentry. Free 20S CPs are found in an autoinhibited state in which the N-terminal tails from neighboring alpha subunits are anchored by an intricate lattice of interactions blocking the channel that leads into the 20S CPs. By deleting channel gating residues of CP alpha subunits, we generated an "open channel" proteasome that exhibits faster rates of protein degradation both in vivo and in vitro, indicating that gating contributes to regulation of proteasome activity. This open channel mutant is delayed in outgrowth from SP and cannot survive following prolonged starvation. In summary, we have found that the ubiquitin-proteasome pathway can be subjected to global downregulation, that the proteasome is a target of this regulation, and that proteasome downregulation is linked to survival of SP cells. Maintaining high viability during SP is essential for evolutionary fitness, which may explain the extreme conservation of channel gating residues in eukaryotic proteasomes.


Subject(s)
Cell Cycle/physiology , Cysteine Endopeptidases/metabolism , Down-Regulation/physiology , Multienzyme Complexes/metabolism , Mutation/genetics , Caseins/metabolism , Cysteine Endopeptidases/genetics , Electrophoresis , Fluorescence , Multienzyme Complexes/genetics , Proteasome Endopeptidase Complex , Saccharomyces cerevisiae
13.
Methods Mol Biol ; 1442: 165-74, 2016.
Article in English | MEDLINE | ID: mdl-27464694

ABSTRACT

We present a high-throughput microfluidics platform to identify novel host cell binding partners of respiratory syncytial virus (RSV) matrix (M) protein. The device consists of thousands of reaction chambers controlled by micro-mechanical valves. The microfluidic device is mated to a microarray-printed custom-made gene library. These genes are then transcribed and translated on-chip, resulting in a protein array ready for binding to RSV M protein.Even small viral proteome, such as that of RSV, presents a challenge due to the fact that viral proteins are usually multifunctional and thus their interaction with the host is complex. Protein microarrays technology allows the interrogation of protein-protein interactions, which could possibly overcome obstacles by using conventional high throughput methods. Using microfluidics platform we have identified new host interactors of M involved in various cellular pathways. A number of microfluidics based assays have already provided novel insights into the virus-host interactome, and the results have important implications for future antiviral strategies aimed at targets of viral protein interactions with the host.


Subject(s)
Microfluidic Analytical Techniques/instrumentation , Protein Interaction Mapping/methods , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus, Human/physiology , Viral Matrix Proteins/metabolism , Gene Library , HEK293 Cells , Host-Pathogen Interactions , Humans , Printing, Three-Dimensional , Protein Array Analysis/instrumentation , Protein Array Analysis/methods , Protein Interaction Mapping/instrumentation , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/metabolism
14.
J Innate Immun ; 8(5): 452-63, 2016.
Article in English | MEDLINE | ID: mdl-27423203

ABSTRACT

Respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections. Immunity to RSV is initiated upon detection of the virus by pattern recognition receptors, such as RIG-I-like receptors. RIG-I-like receptors signal via MAVS to induce the synthesis of proinflammatory mediators, including type I interferons (IFNs), which trigger and shape antiviral responses and protect cells from infection. Alveolar macrophages (AMs) are amongst the first cells to encounter invading viruses and the ones producing type I IFNs. However, it is unclear whether IFNs act to prevent AMs from serving as vehicles for viral replication. In this study, primary AMs from MAVS (Mavs-/-)- or type I IFN receptor (Ifnar1-/-)-deficient mice were exposed to RSV ex vivo. Wild-type (wt) AMs but not Mavs-/- and Ifnar1-/- AMs produced inflammatory mediators in response to RSV. Furthermore, Mavs-/- and Ifnar1-/- AMs accumulated more RSV proteins than wt AMs, but the infection was abortive. Thus, RIG-I-like receptor-MAVS and IFNAR signalling are important for the induction of proinflammatory mediators from AMs upon RSV infection, but this signalling is not central for controlling viral replication. The ability to restrict viral replication makes AMs ideal sensors of RSV infection and important initiators of immune responses in the lung.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Macrophages, Alveolar/immunology , Receptor, Interferon alpha-beta/metabolism , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Cells, Cultured , Cytokines/metabolism , Inflammation Mediators/metabolism , Interferon Type I/metabolism , Macrophages, Alveolar/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Signal Transduction , Virus Replication
15.
Mol Biol Cell ; 20(5): 1360-73, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19129479

ABSTRACT

The newly described yeast endosomal sorting complexes required for transport (ESCRT) protein increased sodium tolerance-1 (Ist1p) binds the late-acting ESCRT proteins Did2p/charged MVB protein (CHMP) 1 and Vps4p and exhibits synthetic vacuolar protein sorting defects when combined with mutations in the Vta1p/LIP5-Vps60p/CHMP5 complex. Here, we report that human IST1 also functions in the ESCRT pathway and is required for efficient abscission during HeLa cell cytokinesis. IST1 binding interactions with VPS4, CHMP1, LIP5, and ESCRT-I were characterized, and the IST1-VPS4 interaction was investigated in detail. Mutational and NMR spectroscopic studies revealed that the IST1 terminus contains two distinct MIT interacting motifs (MIM1 and MIM2) that wrap around and bind in different groves of the MIT helical bundle. IST1, CHMP1, and VPS4 were recruited to the midbodies of dividing cells, and depleting either IST1 or CHMP1 proteins blocked VPS4 recruitment and abscission. In contrast, IST1 depletion did not inhibit human immunodeficiency virus-1 budding. Thus, IST1 and CHMP1 act together to recruit and modulate specific VPS4 activities required during the final stages of cell division.


Subject(s)
Cytokinesis/physiology , Oncogene Proteins/physiology , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphatases/metabolism , Animals , COS Cells , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Chlorocebus aethiops , Endosomal Sorting Complexes Required for Transport , HIV-1/physiology , HeLa Cells , Humans , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/metabolism , Oncogene Proteins/chemistry , Oncogene Proteins/metabolism , Protein Structure, Tertiary , Protein Transport/physiology , Two-Hybrid System Techniques , Vacuolar Proton-Translocating ATPases , Vesicular Transport Proteins/metabolism
16.
Nat Struct Mol Biol ; 16(7): 754-62, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19525971

ABSTRACT

Endosomal sorting complexes required for transport-III (ESCRT-III) subunits cycle between two states: soluble monomers and higher-order assemblies that bind and remodel membranes during endosomal vesicle formation, midbody abscission and enveloped virus budding. Here we show that the N-terminal core domains of increased sodium tolerance-1 (IST1) and charged multivesicular body protein-3 (CHMP3) form equivalent four-helix bundles, revealing that IST1 is a previously unrecognized ESCRT-III family member. IST1 and its ESCRT-III binding partner, CHMP1B, both form higher-order helical structures in vitro, and IST1-CHMP1 interactions are required for abscission. The IST1 and CHMP3 structures also reveal that equivalent downstream alpha5 helices can fold back against the core domains. Mutations within the CHMP3 core-alpha5 interface stimulate the protein's in vitro assembly and HIV-inhibition activities, indicating that dissociation of the autoinhibitory alpha5 helix from the core activates ESCRT-III proteins for assembly at membranes.


Subject(s)
Oncogene Proteins/chemistry , Oncogene Proteins/metabolism , Protein Conformation , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/metabolism , Crystallography, X-Ray , Cytokinesis/physiology , Dimerization , Endosomal Sorting Complexes Required for Transport , Endosomes/metabolism , Humans , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Oncogene Proteins/genetics , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Vesicular Transport Proteins/genetics
17.
J Biol Chem ; 283(11): 7166-75, 2008 Mar 14.
Article in English | MEDLINE | ID: mdl-18174173

ABSTRACT

Endoplasmic reticulum (ER)-associated degradation (ERAD) eliminates aberrant proteins from the ER by dislocating them to the cytoplasm where they are tagged by ubiquitin and degraded by the proteasome. Six distinct AAA-ATPases (Rpt1-6) at the base of the 19S regulatory particle of the 26S proteasome recognize, unfold, and translocate substrates into the 20S catalytic chamber. Here we show unique contributions of individual Rpts to ERAD by employing equivalent conservative substitutions of the invariant lysine in the ATP-binding motif of each Rpt subunit. ERAD of two substrates, luminal CPY*-HA and membrane 6myc-Hmg2, is inhibited only in rpt4R and rpt2RF mutants. Conversely, in vivo degradation of a cytosolic substrate, DeltassCPY*-GFP, as well as in vitro cleavage of Suc-LLVY-AMC are hardly affected in rpt4R mutant yet are inhibited in rpt2RF mutant. Together, we find that equivalent mutations in RPT4 and RPT2 result in different phenotypes. The Rpt4 mutation is manifested in ERAD defects, whereas the Rpt2 mutation is manifested downstream, in global proteasomal activity. Accordingly, rpt4R strain is particularly sensitive to ER stress and exhibits an activated unfolded protein response, whereas rpt2RF strain is sensitive to general stress. Further characterization of Rpt4 involvement in ERAD reveals that it participates in CPY*-HA dislocation, a function previously attributed to p97/Cdc48, another AAA-ATPase essential for ERAD of CPY*-HA but dispensable for proteasomal degradation of DeltassCPY*-GFP. Pointing to Cdc48 and Rpt4 overlapping functions, excess Cdc48 partially restores impaired ERAD in rpt4R, but not in rpt2RF. We discuss models for Cdc48 and Rpt4 cooperation in ERAD.


Subject(s)
Adenosine Triphosphatases/chemistry , Cell Cycle Proteins/metabolism , Endoplasmic Reticulum/enzymology , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/chemistry , Amino Acid Motifs , Cadmium/chemistry , Canavanine/pharmacology , Endoplasmic Reticulum/metabolism , Fungal Proteins/chemistry , Green Fluorescent Proteins/metabolism , Models, Biological , Phenotype , Protein Denaturation , Tunicamycin/pharmacology , Valosin Containing Protein
SELECTION OF CITATIONS
SEARCH DETAIL