Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Parasite ; 31: 11, 2024.
Article in English | MEDLINE | ID: mdl-38450717

ABSTRACT

African animal trypanosomosis (AAT) was one of the main disease-related constraints to the development of intensive livestock production systems in the Niayes region of Senegal, a 30 km wide strip of land along the coast between Dakar and Saint-Louis. To overcome this constraint, the Government of Senegal initiated an area-wide integrated pest management programme combining chemical control tactics with the sterile insect technique to eradicate a population of the tsetse fly Glossina palpalis gambiensis Vanderplank, 1949 (Diptera, Glossinidae) in this area. The project was implemented following a phased conditional approach, and the target area was divided into three blocks treated sequentially. This study aims to assess the temporal dynamics of the prevalence of Trypanosoma spp. during the implementation of this programme. Between 2009 and 2022, 4,359 blood samples were collected from cattle and screened for trypanosomes using both the buffy coat and ELISA techniques, and PCR tests since 2020. The seroprevalence decreased from 18.9% (95%CI: 11.2-26.5) in 2009 to 0% in 2017-2022 in block 1, and from 92.9% (95%CI: 88.2-97) in 2010 to 0% in 2021 in block 2. The parasitological and serological data confirm the entomological monitoring results, i.e., that there is a high probability that the population of G. p. gambiensis has been eradicated from the Niayes and that the transmission of AAT has been interrupted in the treated area. These results indicate the effectiveness of the adopted approach and show that AAT can be sustainably removed through the creation of a zone free of G. p. gambiensis.


Title: Trypanosomose animale éliminée dans une importante région de production d'élevage au Sénégal suite à l'éradication d'une population de glossines. Abstract: La trypanosomose animale africaine (TAA) était l'une des principales contraintes pathologiques au développement de systèmes de production animale intensifs dans les Niayes du Sénégal, une bande de terre large de 30 km longeant la côte entre Dakar et Saint-Louis. Pour surmonter cette contrainte, le Gouvernement du Sénégal a lancé un programme de lutte intégrée à l'échelle de la zone combinant lutte chimique et technique de l'insecte stérile pour éradiquer une population de Glossina palpalis gambiensis Vanderplank, 1949 (Diptera, Glossinidae). Le projet a été mis en œuvre selon une approche conditionnelle progressive, et la zone cible a été divisée en trois blocs, traités de manière séquentielle. L'objectif de cette étude était d'évaluer la dynamique temporelle de la prévalence de Trypanosoma spp. au cours de la mise en œuvre du programme. Entre 2009 et 2022, 4 359 échantillons de sang ont été prélevés sur des bovins et ont fait l'objet d'un dépistage des trypanosomes à l'aide des techniques du buffy-coat et ELISA, ainsi que de test PCR depuis 2020. Dans le bloc 1, la séroprévalence est passée de 18,9 % (IC 95 % : 11,2­26,5) en 2009 à 0 % entre 2017­2022 et de 92,9 % (IC 95 % : 88,2-97) en 2010 à 0 % en 2021 pour le block 2. Les données parasitologiques et sérologiques confirment les résultats du suivi entomologique selon lesquels il est très probable que la population de Glossina palpalis gambiensis soit éradiquée des Niayes, et que la transmission de la TAA a été interrompue dans la zone traitée. Elles indiquent l'efficacité de l'approche adoptée, et montrent que la TAA peut être durablement éliminée grâce à la création d'une zone exempte de G. p. gambiensis.


Subject(s)
Cattle Diseases , Trypanosomiasis, African , Trypanosomiasis , Animals , Cattle , Livestock , Senegal/epidemiology , Seroepidemiologic Studies , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/prevention & control , Trypanosomiasis, African/veterinary
2.
Pathogens ; 13(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39204289

ABSTRACT

Crimean-Congo hemorrhagic fever (CCHF) and Rift Valley fever (RVF) are among the list of emerging zoonotic diseases that require special attention and priority. RVF is one of the six priority diseases selected by the Senegalese government. Repeated epidemic episodes and sporadic cases of CCHF and RVF in Senegal motivated this study, involving a national cross-sectional serological survey to assess the distribution of the two diseases in this country throughout the small ruminant population. A total of 2127 sera from small ruminants (goat and sheep) were collected in all regions of Senegal. The overall seroprevalence of CCHF and RVF was 14.1% (IC 95%: 12.5-15.5) and 4.4% (95% CI: 3.5-5.3), respectively. The regions of Saint-Louis (38.4%; 95% CI: 30.4-46.2), Kolda (28.3%; 95% CI: 20.9-35.7), Tambacounda (22.2%; 95% CI: 15.8-28.6) and Kédougou (20.9%; 95% CI: 14.4-27.4) were the most affected areas. The risk factors identified during this study show that the age, species and sex of the animals are key factors in determining exposure to these two viruses. This study confirms the active circulation of CCHF in Senegal and provides important and consistent data that can be used to improve the surveillance strategy of a two-in-one health approach to zoonoses.

3.
Viruses ; 16(5)2024 05 11.
Article in English | MEDLINE | ID: mdl-38793643

ABSTRACT

Lumpy skin disease is one of the fast-spreading viral diseases of cattle and buffalo that can potentially cause severe economic impact. Lesotho experienced LSD for the first time in 1947 and episodes of outbreaks occurred throughout the decades. In this study, eighteen specimens were collected from LSD-clinically diseased cattle between 2020 and 2022 from Mafeteng, Leribe, Maseru, Berea, and Mohales' Hoek districts of Lesotho. A total of 11 DNA samples were analyzed by PCR and sequencing of the extracellular enveloped virus (EEV) glycoprotein, G-protein-coupled chemokine receptor (GPCR), 30 kDa RNA polymerase subunit (RPO30), and B22R genes. All nucleotide sequences of the above-mentioned genes confirmed that the PCR amplicons of clinical samples are truly LSDV, as they were identical to respective LSDV isolates on the NCBI GenBank. Two of the elevem samples were further characterized by whole-genome sequencing. The analysis, based on both CaPV marker genes and complete genome sequences, revealed that the LSDV isolates from Lesotho cluster with the NW-like LSDVs, which includes the commonly circulating LSDV field isolates from Africa, the Middle East, the Balkans, Turkey, and Eastern Europe.


Subject(s)
Lumpy Skin Disease , Lumpy skin disease virus , Phylogeny , Animals , Cattle , Lumpy Skin Disease/virology , Lumpy Skin Disease/epidemiology , Lesotho/epidemiology , Lumpy skin disease virus/genetics , Lumpy skin disease virus/isolation & purification , Lumpy skin disease virus/classification , Whole Genome Sequencing , Genome, Viral
4.
Nat Commun ; 15(1): 1980, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438367

ABSTRACT

The sterile insect technique is based on the overflooding of a target population with released sterile males inducing sterility in the wild female population. It has proven to be effective against several insect pest species of agricultural and veterinary importance and is under development for Aedes mosquitoes. Here, we show that the release of sterile males at high sterile male to wild female ratios may also impact the target female population through mating harassment. Under laboratory conditions, male to female ratios above 50 to 1 reduce the longevity of female Aedes mosquitoes by reducing their feeding success. Under controlled conditions, blood uptake of females from an artificial host or from a mouse and biting rates on humans are also reduced. Finally, in a field trial conducted in a 1.17 ha area in China, the female biting rate is reduced by 80%, concurrent to a reduction of female mosquito density of 40% due to the swarming of males around humans attempting to mate with the female mosquitoes. This suggests that the sterile insect technique does not only suppress mosquito vector populations through the induction of sterility, but may also reduce disease transmission due to increased female mortality and lower host contact.


Subject(s)
Aedes , Infertility, Male , Humans , Female , Male , Animals , Mice , Reproduction , Cell Communication , Insecta
5.
Insects ; 14(2)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36835776

ABSTRACT

Pilot programs of the sterile insect technique (SIT) against Aedes aegypti may rely on importing significant and consistent numbers of high-quality sterile males from a distant mass rearing factory. As such, long-distance mass transport of sterile males may contribute to meet this requirement if their survival and quality are not compromised. This study therefore aimed to develop and assess a novel method for long-distance shipments of sterile male mosquitoes from the laboratory to the field. Different types of mosquito compaction boxes in addition to a simulation of the transport of marked and unmarked sterile males were assessed in terms of survival rates/recovery rates, flight ability and morphological damage to the mosquitoes. The novel mass transport protocol allowed long-distance shipments of sterile male mosquitoes for up to four days with a nonsignificant impact on survival (>90% for 48 h of transport and between 50 and 70% for 96 h depending on the type of mosquito compaction box), flight ability, and damage. In addition, a one-day recovery period for transported mosquitoes post-transport increased the escaping ability of sterile males by more than 20%. This novel system for the long-distance mass transport of mosquitoes may therefore be used to ship sterile males worldwide for journeys of two to four days. This study demonstrated that the protocol can be used for the standard mass transport of marked or unmarked chilled Aedes mosquitoes required for the SIT or other related genetic control programs.

6.
Insects ; 13(4)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35447821

ABSTRACT

In the implementation of mosquito control strategy programs using Sterile Insect Technique and other rear and release strategies, knowledge on the dispersion, competitiveness and survival of mosquitos is considered essential. To assess these parameters, marking techniques are generally used to differentiate colony mosquitoes from wild ones. Most of the existing mosquito marking methods require numerous manipulations that can impact their quality. In this study, we have developed a self-marking technique that can reduce the damage associated with mosquito handling. The marking technique consisted of adding fluorescent powder (DayGlo: A-17-N Saturn yellow) directly to the surface water of the receptacle containing Aedes aegypti male pupae. Different quantities of powder were used, and marking efficacy, powder persistence and mosquito survival were assessed. The results show a mean marking rate of 98 ± 1.61%, and the probability of marking increased significantly (p < 0.001) with increasing concentrations of fluorescent powder. Fluorescent powder persisted up to 20 days and did not induce a negative effect on mosquito survival (χ2 = 5.3, df = 7, p = 0.63). In addition, powder transfer did not occur between marked and unmarked populations. This marking method significantly reduces human intervention and mosquito handling during the marking process, improving the quality of marked mosquitoes used to assess SIT programs.

7.
Front Bioeng Biotechnol ; 10: 876675, 2022.
Article in English | MEDLINE | ID: mdl-35923573

ABSTRACT

Successful implementation of the sterile insect technique (SIT) against Aedes aegypti and Aedes albopictus relies on maintaining a consistent release of high-quality sterile males. Affordable, rapid, practical quality control tools based on the male's flight ability (ability to escape from a flight device) may contribute to meeting this requirement. Therefore, this study aims to standardize the use of the original FAO/IAEA rapid quality control flight test device (FTD) (version 1.0), while improving handling conditions and reducing the device's overall cost by assessing factors that could impact the subsequent flight ability of Aedes mosquitoes. The new FTD (version 1.1) is easier to use. The most important factors affecting escape rates were found to be tube color (or "shade"), the combined use of a lure and fan, mosquito species, and mosquito age and density (25; 50; 75; 100 males). Other factors measured but found to be less important were the duration of the test (30, 60, 90, 120 min), fan speed (normal 3000 rpm vs. high 6000 rpm), and mosquito strain origin. In addition, a cheaper version of the FTD (version 2.0) that holds eight individual tubes instead of 40 was designed and successfully validated against the new FTD (version 1.1). It was sensitive enough to distinguish between the effects of cold stress and high irradiation dose. Therefore, the eight-tube FTD may be used to assess Aedes' flight ability. This study demonstrated that the new designs (versions 1.1 and 2.0) of the FTD could be used for standard routine quality assessments of Aedes mosquitoes required for an SIT and other male release-based programs.

8.
Transbound Emerg Dis ; 69(4): e1142-e1152, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34812571

ABSTRACT

Porcine circovirus-2 (PCV-2) is associated with several disease syndromes in domestic pigs that have a significant impact on global pig production and health. Currently, little is known about the status of PCV-2 in Africa. In this study, a total of 408 archived DNA samples collected from pigs in Burkina Faso, Cameroon, Cape Verde, Ethiopia, the Democratic Republic of the Congo, Mozambique, Nigeria, Senegal, Tanzania and Zambia between 2000 and 2018 were screened by PCR for the presence of PCV-2. Positive amplicons of the gene encoding the viral capsid protein (ORF2) were sequenced to determine the genotypes circulating in each country. Four of the nine currently known genotypes of PCV-2 were identified (i.e. PCV-2a, PCV-2b, PCV-2d and PCV-2 g) with more than one genotype being identified in Burkina Faso, Ethiopia, Nigeria, Mozambique, Senegal and Zambia. Additionally, a phylogeographic analysis which included 38 additional ORF2 gene sequences of PCV-2s previously identified in Mozambique, Namibia and South Africa from 2014 to 2016 and 2019 to 2020 and available in public databases, demonstrated the existence of several African-specific clusters and estimated the approximate time of introduction of PCV-2s into Africa from other continents. This is the first in-depth study of PCV-2 in Africa and it has important implications for pig production at both the small-holder and commercial farm level on the continent.


Subject(s)
Circoviridae Infections , Circovirus , Swine Diseases , Animals , Circoviridae Infections/epidemiology , Circoviridae Infections/veterinary , Circovirus/genetics , DNA, Viral/genetics , Europe , Nigeria , Swine , Swine Diseases/epidemiology
9.
Acta Trop ; 222: 106065, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34303690

ABSTRACT

The use of efficient mosquito sampling methods in vector surveillance programs is crucial to inform control actions and prevent outbreaks. amongst existing trapping methods, the BG sentinel trap is widely used for collecting mosquitoes from the subgenus Stegomyia. However, studies state that the BG-sentinel trap underestimates the relative abundance of mosquito vectors. In this study, we used mice to enhance the effectiveness of the BG-sentinel trap to collect Aedes aegypti (Linnaeus) and follow the species' daily abundance under local conditions. The Latin square method was used to compare different combinations in three different seasons. Of the 35,107 mosquitoes collected, Ae. aegypti (53.82%) and Culex quinquefasciatus (46.07%) were dominant. The combination of BG-Lure + 3 mice captured more Ae. aegypti individuals (apparent density per trap/day (ADT = 187.65 ± 133.53; p < 0.001) followed by the 3 mice-baited BG-sentinel trap (ADT = 163.47 ± 117.32), the BG-sentinel trap without attractant (ADT = 74.15 ± 117.07) and the BG-sentinel trap + BG-Lure (ADT = 47.1 ± 115.91). Aedes aegypti showed two peaks of activity in the day, one following the sunrise and one before the sunset, influenced by temperature and relative humidity. Our study suggests the use of mice to enhance the efficiency of the BG-Sentinel trap to catch Ae. aegypti. However, its application in large scale entomological monitoring programs should be difficult because of ethical and operational constraints.


Subject(s)
Aedes , Mosquito Control , Animals , Culex , Mice , Mosquito Vectors , Senegal
10.
Parasit Vectors ; 12(1): 135, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30902107

ABSTRACT

BACKGROUND: The south-west insular territories of the Indian Ocean have recently received attention concerning the diversity of arthropods of medical or veterinary interest. While a recent study highlighted the circulation of Culicoides-borne viruses, namely bluetongue and epizootic hemorrhagic disease, with clinical cases in Mayotte (comprising two islands, Petite-Terre and Grand-Terre), Comoros Archipelago, no data have been published concerning the species diversity of Culicoides present on the two islands. RESULTS: A total of 194,734 biting midges were collected in 18 sites, covering two collection sessions (April and June) in Mayotte. Our study reports for the first time livestock-associated Culicoides species and recorded at least 17 described Afrotropical species and one undescribed species. The most abundant species during the April collection session were C. trifasciellus (84.1%), C. bolitinos (5.4%), C. enderleini (3.9%), C. leucostictus (3.3%) and C. rhizophorensis (2.1%). All other species including C. imicola represented less than 1% of the total collection. Abundance ranged between 126-78,842 females with a mean and median abundance of 14,338 and 5111 individuals/night/site, respectively. During the June collection, the abundance per night was low, ranging between 6-475 individuals. Despite low abundance, C. trifasciellus and C. bolitinos were still the most abundant species. Culicoides sp. #50 is recorded for the first time outside South Africa. CONCLUSIONS: Our study reports for the first time the Culicoides species list for Mayotte, Comoros Archipelago, Indian Ocean. The low abundance and rare occurrence of C. imicola, which is usually considered the most abundant species in the Afrotropical region, is unexpected. The most abundant and frequent species is C. trifasciellus, which is not considered as a vector species so far, but its role needs further investigation. Further work is needed to describe Culicoides sp. #50 and to carry on faunistic investigations on the other islands of the archipelago as well as in neighboring countries.


Subject(s)
Ceratopogonidae/virology , Genetic Variation , Animal Distribution , Animals , Ceratopogonidae/classification , Comoros , Female , Indian Ocean
11.
Parasite ; 26: 57, 2019.
Article in English | MEDLINE | ID: mdl-31535969

ABSTRACT

The mass production of mosquitoes is becoming more wide-spread due to the increased application of the sterile insect technique (SIT) and other genetic control programmes. Due to the variable availability and high cost of the bovine liver powder (BLP) constituent of many current larval diets, there is an urgent demand for new ingredients in order to support sustainable and efficient mosquito production while reducing rearing cost, without affecting the quality of the insects produced. Two black soldier fly (BSF) powder-based diet formulations (50% tuna meal, 35% BSF powder, 15% brewer's yeast and 50% tuna meal + 50% BSF powder) were tested for their suitability to support the development of Aedes aegypti and Ae. albopictus mosquitoes in mass-rearing conditions. Overall, the results indicate that the use of the BSF powder did not negatively impact the development and quality of the produced insects in terms of time to pupation, adult production and male flight ability. Furthermore, depending on the species and diet formulations, there were improvements in some parameters such as female body size, egg production, egg hatch rate and male longevity. BSF powder is a valuable ingredient that can effectively replace costly BLP for the mass production of high quality Ae. aegypti and Ae. albopictus mosquitoes. Both diet formulations can be used for Ae. aegypti showing high plasticity to nutrition sources. However, for Ae. albopictus we recommend the combination including brewer's yeast.


TITLE: La poudre de larves de mouche-soldat noire (Hermetia illucens) comme ingrédient alimentaire pour l'élevage de masse des moustiques Aedes. ABSTRACT: L'élevage de masse de moustiques est de plus en plus répandu en raison de l'application de la technique de l'insecte stérile et d'autres techniques de lutte génétique. En raison de la disponibilité variable et du coût élevé de la poudre de foie de bovin, ingrédient de nombreux régimes larvaires, il devient urgent de trouver de nouveaux ingrédients afin de soutenir une production durable et efficace des moustiques, en réduisant les coûts d'élevage sans toutefois affecter la qualité des insectes produits. Deux formulations de régime à base de poudre de mouche-soldat noire (50 % farine de thon + 35 % poudre de mouche-soldat noire + 15 % levure de bière et 50 % farine de thon + 50 % poudre de mouche-soldat noire) ont été évaluées pour déterminer leur capacité à soutenir le développement larvaire d'Aedes aegypti et Ae. albopictus dans des conditions d'élevage de masse. Dans l'ensemble, les résultats indiquent que l'utilisation de la poudre de mouche-soldat noire n'a pas d'impact négatif sur le développement larvaire et la qualité des insectes produits en termes de temps de développement, de production d'adultes et de capacité de vol des mâles. En outre, en fonction de l'espèce et de la formulation du régime, certains paramètres tels que la taille des femelles, la production d'œufs, le taux d'éclosion des œufs et la longévité des mâles ont été améliorés. La poudre de mouche-soldat noire est un ingrédient de valeur qui peut remplacer efficacement la coûteuse poudre de foie de bovin pour la production en masse de moustiques Ae aegypti et Ae. albopictus de grande qualité. Les deux formules de régime peuvent être utilisées pour Ae. aegypti qui montre une grande plasticité à la source de nutrition. Cependant, pour Ae. albopictus, nous recommandons la formulation comprenant la levure de bière.


Subject(s)
Aedes/growth & development , Animal Feed/analysis , Powders/administration & dosage , Simuliidae/chemistry , Animals , Female , Larva/growth & development , Powders/chemistry
12.
Parasit Vectors ; 11(1): 615, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30509304

ABSTRACT

BACKGROUND: Biting midge species of the genus Culicoides Latreille (Diptera: Ceratopogonidae) comprise more than 1300 species distributed worldwide. Several species of Culicoides are vectors of various viruses that can affect animals, like the African horse sickness virus (AHSV), known to be endemic in sub-Saharan Africa. The ecological and veterinary interest of Culicoides emphasizes the need for rapid and reliable identification of vector species. However, morphology-based identification has limitations and warrants integration of molecular data. DNA barcoding based on the mitochondrial gene cytochrome c oxidase subunit 1 (cox1) is used as a rapid and authentic tool for species identification in a wide variety of animal taxa across the globe. In this study, our objectives were as follows: (i) establish a reference DNA barcode for Afrotropical Culicoides species; (ii) assess the accuracy of cox1 in identifying Afrotropical Culicoides species; and (iii) test the applicability of DNA barcoding for species identification on a large number of samples of Culicoides larvae from the Niayes area of Senegal, West Africa. RESULTS: A database of 230 cox1 sequences belonging to 42 Afrotropical Culicoides species was found to be reliable for species-level assignments, which enabled us to identify cox1 sequences of Culicoides larvae from the Niayes area of Senegal. Of the 933 cox1 sequences of Culicoides larvae analyzed, 906 were correctly identified by their barcode sequences corresponding to eight species of Culicoides. A total of 1131 cox1 sequences of adult and larval Culicoides were analyzed, and a hierarchical increase in mean divergence was observed according to two taxonomic levels: within species (mean = 1.92%, SE = 0.00), and within genus (mean = 17.82%, SE = 0.00). CONCLUSIONS: Our study proves the efficiency of DNA barcoding for studying Culicoides larval diversity in field samples. Such a diagnostic tool offers great opportunities for investigating Culicoides immature stages ecology and biology, a prerequisite for the implementation of eco-epidemiological studies to better control AHSV in the Niayes region of Senegal, and more generally in sub-Saharan Africa.


Subject(s)
Ceratopogonidae/classification , DNA Barcoding, Taxonomic , Insect Vectors/classification , Larva/classification , Animals , Biodiversity , Ceratopogonidae/genetics , Cyclooxygenase 1/genetics , Insect Proteins/genetics , Insect Vectors/genetics , Larva/genetics , Senegal
13.
PLoS One ; 10(6): e0131021, 2015.
Article in English | MEDLINE | ID: mdl-26121048

ABSTRACT

In Senegal, considerable mortality in the equine population and hence major economic losses were caused by the African horse sickness (AHS) epizootic in 2007. Culicoides oxystoma and Culicoides imicola, known or suspected of being vectors of bluetongue and AHS viruses are two predominant species in the vicinity of horses and are present all year-round in Niayes area, Senegal. The aim of this study was to better understand the environmental and climatic drivers of the dynamics of these two species. Culicoides collections were obtained using OVI (Onderstepoort Veterinary Institute) light traps at each of the 5 sites for three nights of consecutive collection per month over one year. Cross Correlation Map analysis was performed to determine the time-lags for which environmental variables and abundance data were the most correlated. C. oxystoma and C. imicola count data were highly variable and overdispersed. Despite modelling large Culicoides counts (over 220,000 Culicoides captured in 354 night-traps), using on-site climate measures, overdispersion persisted in Poisson, negative binomial, Poisson regression mixed-effect with random effect at the site of capture models. The only model able to take into account overdispersion was the Poisson regression mixed-effect model with nested random effects at the site and date of capture levels. According to this model, meteorological variables that contribute to explaining the dynamics of C. oxystoma and C. imicola abundances were: mean temperature and relative humidity of the capture day, mean humidity between 21 and 19 days prior a capture event, density of ruminants, percentage cover of water bodies within a 2 km radius and interaction between temperature and humidity for C. oxystoma; mean rainfall and NDVI of the capture day and percentage cover of water bodies for C. imicola. Other variables such as soil moisture, wind speed, degree days, land cover or landscape metrics could be tested to improve the models. Further work should also assess whether other trapping methods such as host-baited traps help reduce overdispersion.


Subject(s)
Ceratopogonidae/physiology , Models, Biological , Animals , Female , Multivariate Analysis , Reproducibility of Results , Senegal , Species Specificity
14.
Parasit Vectors ; 7: 147, 2014 Mar 31.
Article in English | MEDLINE | ID: mdl-24690198

ABSTRACT

BACKGROUND: The African horse sickness epizootic in Senegal in 2007 caused considerable mortality in the equine population and hence major economic losses. The vectors involved in the transmission of this arbovirus have never been studied specifically in Senegal. This first study of the spatial and temporal dynamics of the Culicoides (Diptera: Ceratopogonidae) species, potential vectors of African horse sickness in Senegal, was conducted at five sites (Mbao, Parc Hann, Niague, Pout and Thies) in the Niayes area, which was affected by the outbreak. METHODS: Two Onderstepoort light traps were used at each site for three nights of consecutive collection per month over one year to measure the apparent abundance of the Culicoides midges. RESULTS: In total, 224,665 specimens belonging to at least 24 different species (distributed among 11 groups of species) of the Culicoides genus were captured in 354 individual collections. Culicoides oxystoma, Culicoides kingi, Culicoides imicola, Culicoides enderleini and Culicoides nivosus were the most abundant and most frequent species at the collection sites. Peaks of abundance coincide with the rainy season in September and October. CONCLUSIONS: In addition to C. imicola, considered a major vector for the African horse sickness virus, C. oxystoma may also be involved in the transmission of this virus in Senegal given its abundance in the vicinity of horses and its suspected competence for other arboviruses including bluetongue virus. This study depicted a site-dependent spatial variability in the dynamics of the populations of the five major species in relation to the eco-climatic conditions at each site.


Subject(s)
African Horse Sickness Virus/physiology , Bluetongue virus/physiology , Ceratopogonidae/physiology , Insect Vectors/virology , Seasons , African Horse Sickness/epidemiology , African Horse Sickness/transmission , African Horse Sickness/virology , Animals , Disease Outbreaks , Horses , Population Dynamics , Senegal/epidemiology , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL