Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Development ; 145(4)2018 02 21.
Article in English | MEDLINE | ID: mdl-29437780

ABSTRACT

Tooth agenesis is one of the predominant developmental anomalies in humans, usually affecting the permanent dentition generated by sequential tooth formation and, in most cases, caused by mutations perturbing epithelial Wnt/ß-catenin signaling. In addition, loss-of-function mutations in the Wnt feedback inhibitor AXIN2 lead to human tooth agenesis. We have investigated the functions of Wnt/ß-catenin signaling during sequential formation of molar teeth using mouse models. Continuous initiation of new teeth, which is observed after genetic activation of Wnt/ß-catenin signaling in the oral epithelium, was accompanied by enhanced expression of Wnt antagonists and a downregulation of Wnt/ß-catenin signaling in the dental mesenchyme. Genetic and pharmacological activation of mesenchymal Wnt/ß-catenin signaling negatively regulated sequential tooth formation, an effect partly mediated by Bmp4. Runx2, a gene whose loss-of-function mutations result in sequential formation of supernumerary teeth in the human cleidocranial dysplasia syndrome, suppressed the expression of Wnt inhibitors Axin2 and Drapc1 in dental mesenchyme. Our data indicate that increased mesenchymal Wnt signaling inhibits the sequential formation of teeth, and suggest that Axin2/Runx2 antagonistic interactions modulate the level of mesenchymal Wnt/ß-catenin signaling, underlying the contrasting dental phenotypes caused by human AXIN2 and RUNX2 mutations.


Subject(s)
Odontogenesis/genetics , Tooth/metabolism , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Axin Protein/metabolism , Fluorescent Antibody Technique , In Situ Hybridization , Mice , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Wnt Signaling Pathway
2.
Stem Cells ; 37(1): 26-32, 2019 01.
Article in English | MEDLINE | ID: mdl-30270477

ABSTRACT

Development of teeth depends on the reciprocal interactions between the surface epithelium (ectoderm) and the underlying neural crest-derived mesenchyme. These interactions are facilitated by the conserved signaling pathways, which build a complex network of signals and transcription factors. Tooth development starts at specific and predetermined loci in the oral ectoderm and is described as a morphologically distinct thickening of oral ectoderm, named dental lamina. Cells within the dental lamina invaginate into the underlying mesenchyme, generating placodes that mark the onset of individual tooth development. In the following stages of development, the tooth epithelium buds and folds transitioning through various shapes, including bud, cap, and bell shapes, which also identify the specific stages of tooth development. Although much of the molecular regulation of tooth development has been unraveled, the regulation of the initial stages of tooth development, as well as the cellular mechanisms that govern tooth development remain largely unknown. This review provides a systematic overview of the current knowledge on the molecular and cellular mechanisms that guide initial stages of tooth development and outlines the challenges which temper the progress. Stem Cells 2019;37:26-32.


Subject(s)
Cell Biology , Odontogenesis/immunology , Tooth/embryology , Humans
3.
Stem Cells ; 37(9): 1238-1248, 2019 09.
Article in English | MEDLINE | ID: mdl-31145830

ABSTRACT

Continuous growth of the mouse incisor teeth is due to the life-long maintenance of epithelial stem cells (SCs) in their niche called cervical loop (CL). Several signaling factors regulate SC maintenance and/or their differentiation to achieve organ homeostasis. Previous studies indicated that Hedgehog signaling is crucial for both the maintenance of the SCs in the niche, as well as for their differentiation. How Hedgehog signaling regulates these two opposing cellular behaviors within the confinement of the CL remains elusive. In this study, we used in vitro organ and cell cultures to pharmacologically attenuate Hedgehog signaling. We analyzed expression of various genes expressed in the SC niche to determine the effect of altered Hedgehog signaling on the cellular hierarchy within the niche. These genes include markers of SCs (Sox2 and Lgr5) and transit-amplifying cells (P-cadherin, Sonic Hedgehog, and Yap). Our results show that Hedgehog signaling is a critical survival factor for SCs in the niche, and that the architecture and the diversity of the SC niche are regulated by multiple Hedgehog ligands. We demonstrated the presence of an additional Hedgehog ligand, nerve-derived Desert Hedgehog, secreted in the proximity of the CL. In addition, we provide evidence that Hedgehog receptors Ptch1 and Ptch2 elicit independent responses, which enable multimodal Hedgehog signaling to simultaneously regulate SC maintenance and differentiation. Our study indicates that the cellular hierarchy in the continuously growing incisor is a result of complex interplay of two Hedgehog ligands with functionally distinct Ptch receptors. Stem Cells 2019;37:1238-1248.


Subject(s)
Epithelial Cells/metabolism , Hedgehog Proteins/metabolism , Patched-1 Receptor/metabolism , Patched-2 Receptor/metabolism , Stem Cell Niche , Stem Cells/metabolism , Animals , Cadherins/genetics , Cadherins/metabolism , Cells, Cultured , Epithelial Cells/cytology , Hedgehog Proteins/genetics , Incisor/cytology , Mice, Knockout , Mice, Transgenic , Models, Biological , Patched-1 Receptor/genetics , Patched-2 Receptor/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Signal Transduction/genetics , Stem Cells/cytology
4.
Croat Med J ; 61(2): 93-99, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32378375

ABSTRACT

AIM: To evaluate the association between the use of dipeptidyl peptidase-4 inhibitors (DPP4I) and clinical and laboratory findings of bullous pemphigoid (BP) in patients treated at the European Reference Network - Skin Reference Centre in Croatia. METHODS: This retrospective study enrolled 82 patients treated for BP at the Department of Dermatovenereology, University Hospital Center Zagreb from January 2015 to December 2019. Clinical features of BP, presence of comorbidities, and laboratory findings of anti-BP antibodies and eosinophilia were analyzed in three groups of BP patients: 1) diabetes mellitus (DM) type II patients treated with DPP4I, 2) DM type II patients not treated with DPP4I, and 3) non-DM type II patients. RESULTS: The average age and anti-BP180 titer were similar in all three groups. DPP4I group had a slightly lower eosinophil level in both peripheral blood (4.89%) and biopsy specimens (87.5%), but the difference was not significant. The prevalence of inflammatory BP in DPP4I group was 76.5%. DPP4I group had significantly higher percentage of patients with chronic renal failure and dementia (52.9% and 11.8%, respectively) compared with non-DPP4I DM (14.3% and 0%, respectively) and non-DM type II patients (15.7% and 0%, respectively). CONCLUSION: BP patients treated with DPP4I and those not treated with DPP4Is did not significantly differ in laboratory findings. However, DPP4I treatment was associated with an inflammatory subtype of BP and a higher prevalence of dementia and chronic renal failure. These findings warrant further research into the association of BP and DM with dementia and chronic renal failure.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Pemphigoid, Bullous , Croatia , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Eosinophils , Humans , Pemphigoid, Bullous/chemically induced , Pemphigoid, Bullous/epidemiology , Retrospective Studies
5.
Int J Mol Sci ; 21(3)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979308

ABSTRACT

Omega-3 (ω-3) and omega-6 (ω-6) polyunsaturated fatty acids (PUFAs) are nowadays desirable components of oils with special dietary and functional properties. Their therapeutic and health-promoting effects have already been established in various chronic inflammatory and autoimmune diseases through various mechanisms, including modifications in cell membrane lipid composition, gene expression, cellular metabolism, and signal transduction. The application of ω-3 and ω-6 PUFAs in most common skin diseases has been examined in numerous studies, but their results and conclusions were mostly opposing and inconclusive. It seems that combined ω-6, gamma-linolenic acid (GLA), and ω-3 long-chain PUFAs supplementation exhibits the highest potential in diminishing inflammatory processes, which could be beneficial for the management of inflammatory skin diseases, such as atopic dermatitis, psoriasis, and acne. Due to significant population and individually-based genetic variations that impact PUFAs metabolism and associated metabolites, gene expression, and subsequent inflammatory responses, at this point, we could not recommend strict dietary and supplementation strategies for disease prevention and treatment that will be appropriate for all. Well-balanced nutrition and additional anti-inflammatory PUFA-based supplementation should be encouraged in a targeted manner for individuals in need to provide better management of skin diseases but, most importantly, to maintain and improve overall skin health.


Subject(s)
Acne Vulgaris/diet therapy , Dermatitis/diet therapy , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-6/therapeutic use , Psoriasis/diet therapy , Acne Vulgaris/immunology , Acne Vulgaris/microbiology , Acne Vulgaris/prevention & control , Dermatitis/immunology , Dermatitis/metabolism , Dermatitis/prevention & control , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Gene Expression Regulation/immunology , Gene Expression Regulation/physiology , Humans , Psoriasis/immunology , Psoriasis/prevention & control , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism , gamma-Linolenic Acid/therapeutic use
6.
Int J Mol Sci ; 21(6)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183011

ABSTRACT

Dysfunctional skin barrier plays a key role in the pathophysiology of atopic dermatitis (AD), a common inflammatory skin disease. Altered composition of ceramides is regarded as a major cause of skin barrier dysfunction, however it is not clear whether these changes are intrinsic or initiated by inflammation and aberrant immune response in AD. This study investigated the levels of free sphingoid bases (SBs) sphingosine and sphinganine and their ceramides and glucosylceramide in the stratum corneum (SC) and related them to skin barrier function, disease severity and local cytokine milieu. Ceramides were measured in healthy skin, and lesional and non-lesional skin of AD patients by a novel method based on deacylation of ceramides which were subsequently determined as corresponding sphingoid bases by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The cytokine levels were determined by multiplex immunoassay. Atopic skin showed increased levels of most investigated markers, predominantly in lesional skin. The largest difference in respect to healthy skin was found for glucosylceramide with respective median values of 0.23 (IQR 0.18-0.61), 0.56 (IQR 0.32-0.76) and 19.32 (IQR 7.86-27.62) pmol/g protein for healthy, non-lesional and lesional skin. The levels of investigated ceramide markers were correlated with disease severity (scoring atopic dermatitis, SCORAD) and skin barrier function (trans-epidermal water loss, TEWL) and furthermore with cytokines involved in innate, Th-1, and Th-2 immune response. Interestingly, the strongest association with SCORAD was found for sphinganine/sphingosine ratio (r = -0.69, p < 0.001; non-lesional skin), emphasizing the importance of SBs in AD. The highest correlation with TEWL was found for glucosylceramide (r2 = 0.60, p < 0.001), which was investigated for the first time in AD. Findings that the changes in SBs and ceramide levels were predominant in lesional skin and their association with disease severity and cytokine levels suggest an immune-system driven effect. a novel analysis method demonstrates a robust and simple approach that might facilitate wider use of lipid biomarkers in the clinics e.g., to monitor (immune) therapy or dissect disease endotypes.


Subject(s)
Ceramides/metabolism , Cytokines/metabolism , Dermatitis, Atopic/metabolism , Sphingosine/analogs & derivatives , Adult , Biomarkers/metabolism , Dermatitis, Atopic/pathology , Female , Humans , Male , Sphingosine/metabolism
7.
Development ; 142(22): 3954-63, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26450968

ABSTRACT

Epithelial morphogenesis generates the shape of the tooth crown. This is driven by patterned differentiation of cells into enamel knots, root-forming cervical loops and enamel-forming ameloblasts. Enamel knots are signaling centers that define the positions of cusp tips in a tooth by instructing the adjacent epithelium to fold and proliferate. Here, we show that the forkhead-box transcription factor Foxi3 inhibits formation of enamel knots and cervical loops and thus the differentiation of dental epithelium in mice. Conditional deletion of Foxi3 (Foxi3 cKO) led to fusion of molars with abnormally patterned shallow cusps. Foxi3 was expressed in the epithelium, and its expression was reduced in the enamel knots and cervical loops and in ameloblasts. Bmp4, a known inducer of enamel knots and dental epithelial differentiation, downregulated Foxi3 in wild-type teeth. Using genome-wide gene expression profiling, we showed that in Foxi3 cKO there was an early upregulation of differentiation markers, such as p21, Fgf15 and Sfrp5. Different signaling pathway components that are normally restricted to the enamel knots were expanded in the epithelium, and Sostdc1, a marker of the intercuspal epithelium, was missing. These findings indicated that the activator-inhibitor balance regulating cusp patterning was disrupted in Foxi3 cKO. In addition, early molar bud morphogenesis and, in particular, formation of the suprabasal epithelial cell layer were impaired. We identified keratin 10 as a marker of suprabasal epithelial cells in teeth. Our results suggest that Foxi3 maintains dental epithelial cells in an undifferentiated state and thereby regulates multiple stages of tooth morphogenesis.


Subject(s)
Cell Differentiation/physiology , Epithelium/physiology , Forkhead Transcription Factors/metabolism , Molar/embryology , Morphogenesis/physiology , Signal Transduction/physiology , Tooth Crown/embryology , Animals , Bone Morphogenetic Protein 4/metabolism , Epithelium/metabolism , Fluorescent Antibody Technique , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Knockout , Protein Array Analysis , Reverse Transcriptase Polymerase Chain Reaction
8.
Gerontology ; 64(4): 382-388, 2018.
Article in English | MEDLINE | ID: mdl-29533942

ABSTRACT

The tooth is an intricate composition of precisely patterned, mineralized matrices and soft tissues. Mineralized tissues include enamel (produced by the epithelial cells called ameloblasts), dentin and cementum (produced by mesenchymal cells called odontoblasts and cementoblasts, respectively), and soft tissues, which include the dental pulp and the periodontal ligament along with the invading nerves and blood vessels. It was perceived for a very long time that teeth primarily serve an esthetical function. In recent years, however, the role of healthy teeth, as well as the impact of oral health on general well-being, became more evident. Tooth loss, caused by tooth decay, congenital malformations (tooth agenesis), trauma, periodontal diseases, or age-related changes, is usually replaced by artificial materials which lack many of the important biological characteristics of the natural tooth. Human teeth have very low to almost absent regeneration potential, due to early loss of cell populations with regenerative capacity, namely stem cells. Significant effort has been made in recent decades to identify and characterize tooth stem cells, and to unravel the developmental programs which these cells follow in order to generate a tooth.


Subject(s)
Regeneration/physiology , Tooth/physiology , Aging/pathology , Aging/physiology , Animals , Epithelial-Mesenchymal Transition/physiology , Humans , Models, Biological , Odontogenesis/physiology , Stem Cell Niche/physiology , Tooth/cytology , Tooth/growth & development
9.
Nat Methods ; 11(11): 1161-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25262208

ABSTRACT

Cancer stem cells (CSCs) are thought to drive tumor growth, metastasis and chemoresistance. Although surface markers such as CD133 and CD44 have been successfully used to isolate CSCs, their expression is not exclusively linked to the CSC phenotype and is prone to environmental alteration. We identified cells with an autofluorescent subcellular compartment that exclusively showed CSC features across different human tumor types. Primary tumor-derived autofluorescent cells did not overlap with side-population (SP) cells, were enriched in sphere culture and during chemotherapy, strongly expressed pluripotency-associated genes, were highly metastatic and showed long-term in vivo tumorigenicity, even at the single-cell level. Autofluorescence was due to riboflavin accumulation in membrane-bounded cytoplasmic structures bearing ATP-dependent ABCG2 transporters. In summary, we identified and characterized an intrinsic autofluorescent phenotype in CSCs of diverse epithelial cancers and used this marker to isolate and characterize these cells.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Separation/methods , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Optical Imaging/methods , Riboflavin/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/metabolism , Animals , Autophagy , Autophagy-Related Protein 12 , Carcinoma, Hepatocellular/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Pancreatic Ductal/pathology , Colorectal Neoplasms/pathology , Female , Humans , Liver Neoplasms/pathology , Lung Neoplasms/pathology , Mice , Mice, Nude , Microtubule-Associated Proteins/biosynthesis , Neoplasm Proteins/metabolism , Pancreatic Neoplasms/pathology , Small Ubiquitin-Related Modifier Proteins/biosynthesis , Tumor Cells, Cultured
10.
Stem Cells ; 33(5): 1670-81, 2015 May.
Article in English | MEDLINE | ID: mdl-25693510

ABSTRACT

Continuous growth of rodent incisors relies on epithelial stem cells (SCs) located in the SC niche called labial cervical loop (LaCL). Here, we found a population of apoptotic cells residing in a specific location of the LaCL in mouse incisor. Activated Caspase 3 and Caspase 9, expressed in this location colocalized in part with Lgr5 in putative SCs. The addition of Caspase inhibitors to incisors ex vivo resulted in concentration dependent thickening of LaCL. To examine the role of Wnt signaling in regulation of apoptosis, we exposed the LaCL of postnatal day 2 (P2) mouse incisor ex vivo to BIO, a known activator of Wnt/ß-catenin signaling. This resulted in marked thinning of LaCL as well as enhanced apoptosis. We found that Wnt/ß-catenin signaling was intensely induced by BIO in the mesenchyme surrounding the LaCL, but, unexpectedly, no ß-catenin activity was detected in the LaCL epithelium either before or after BIO treatment. We discovered that the expression of Fgf10, an essential growth factor for incisor epithelial SCs, was dramatically downregulated in the mesenchyme around BIO-treated LaCL, and that exogenous Fgf10 could rescue the thinning of the LaCL caused by BIO. We conclude that the homeostasis of the epithelial SC population in the mouse incisor depends on a proper rate of apoptosis and that this apoptosis is controlled by signals from the mesenchyme surrounding the LaCL. Fgf10 is a key mesenchymal signal limiting apoptosis of incisor epithelial SCs and its expression is negatively regulated by Wnt/ß-catenin. Stem Cells 2015;33:1670-1681.


Subject(s)
Apoptosis/drug effects , Epithelial Cells/cytology , Fibroblast Growth Factor 10/pharmacology , Homeostasis/drug effects , Mesoderm/metabolism , Stem Cells/metabolism , Tooth/cytology , Wnt Signaling Pathway/drug effects , Animals , Cell Proliferation/drug effects , Epithelial Cells/drug effects , Incisor/cytology , Mesoderm/drug effects , Mice , Models, Biological , Receptors, G-Protein-Coupled/metabolism , Stem Cell Niche/drug effects , Stem Cells/cytology , Stem Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL