Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Nature ; 601(7891): 125-131, 2022 01.
Article in English | MEDLINE | ID: mdl-34880496

ABSTRACT

All cancers emerge after a period of clonal selection and subsequent clonal expansion. Although the evolutionary principles imparted by genetic intratumour heterogeneity are becoming increasingly clear1, little is known about the non-genetic mechanisms that contribute to intratumour heterogeneity and malignant clonal fitness2. Here, using single-cell profiling and lineage tracing (SPLINTR)-an expressed barcoding strategy-we trace isogenic clones in three clinically relevant mouse models of acute myeloid leukaemia. We find that malignant clonal dominance is a cell-intrinsic and heritable property that is facilitated by the repression of antigen presentation and increased expression of the secretory leukocyte peptidase inhibitor gene (Slpi), which we genetically validate as a regulator of acute myeloid leukaemia. Increased transcriptional heterogeneity is a feature that enables clonal fitness in diverse tissues and immune microenvironments and in the context of clonal competition between genetically distinct clones. Similar to haematopoietic stem cells3, leukaemia stem cells (LSCs) display heritable clone-intrinsic properties of high, and low clonal output that contribute to the overall tumour mass. We demonstrate that LSC clonal output dictates sensitivity to chemotherapy and, although high- and low-output clones adapt differently to therapeutic pressure, they coordinately emerge from minimal residual disease with increased expression of the LSC program. Together, these data provide fundamental insights into the non-genetic transcriptional processes that underpin malignant clonal fitness and may inform future therapeutic strategies.


Subject(s)
Cell Competition , Clone Cells/pathology , Leukemia, Myeloid, Acute/pathology , Single-Cell Analysis , Animals , Cell Competition/drug effects , Cell Line , Cell Lineage/drug effects , Clone Cells/drug effects , Clone Cells/metabolism , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Inbred C57BL , Secretory Leukocyte Peptidase Inhibitor/metabolism
2.
Gut ; 71(8): 1515-1531, 2022 08.
Article in English | MEDLINE | ID: mdl-34489308

ABSTRACT

OBJECTIVE: The absent in melanoma 2 (AIM2) cytosolic pattern recognition receptor and DNA sensor promotes the pathogenesis of autoimmune and chronic inflammatory diseases via caspase-1-containing inflammasome complexes. However, the role of AIM2 in cancer is ill-defined. DESIGN: The expression of AIM2 and its clinical significance was assessed in human gastric cancer (GC) patient cohorts. Genetic or therapeutic manipulation of AIM2 expression and activity was performed in the genetically engineered gp130 F/F spontaneous GC mouse model, as well as human GC cell line xenografts. The biological role and mechanism of action of AIM2 in gastric tumourigenesis, including its involvement in inflammasome activity and functional interaction with microtubule-associated end-binding protein 1 (EB1), was determined in vitro and in vivo. RESULTS: AIM2 expression is upregulated by interleukin-11 cytokine-mediated activation of the oncogenic latent transcription factor STAT3 in the tumour epithelium of GC mouse models and patients with GC. Genetic and therapeutic targeting of AIM2 in gp130 F/F mice suppressed tumourigenesis. Conversely, AIM2 overexpression augmented the tumour load of human GC cell line xenografts. The protumourigenic function of AIM2 was independent of inflammasome activity and inflammation. Rather, in vivo and in vitro AIM2 physically interacted with EB1 to promote epithelial cell migration and tumourigenesis. Furthermore, upregulated expression of AIM2 and EB1 in the tumour epithelium of patients with GC was independently associated with poor patient survival. CONCLUSION: AIM2 can play a driver role in epithelial carcinogenesis by linking cytokine-STAT3 signalling, innate immunity and epithelial cell migration, independent of inflammasome activation.


Subject(s)
Melanoma , Stomach Neoplasms , Animals , Carcinogenesis/genetics , Cell Movement/genetics , Cytokine Receptor gp130/metabolism , DNA , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Immunity, Innate/genetics , Inflammasomes/genetics , Inflammasomes/metabolism , Mice , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/pathology , Up-Regulation
3.
Am J Pathol ; 190(6): 1256-1270, 2020 06.
Article in English | MEDLINE | ID: mdl-32201262

ABSTRACT

Gastric cancer is associated with chronic inflammation (gastritis) triggered by persistent Helicobacter pylori (H. pylori) infection. Elevated tyrosine phosphorylation of the latent transcription factor STAT3 is a feature of gastric cancer, including H. pylori-infected tissues, and aligns with nuclear transcriptional activity. However, the transcriptional role of STAT3 serine phosphorylation, which promotes STAT3-driven mitochondrial activities, is unclear. Here, by coupling serine-phosphorylated (pS)-STAT3-deficient Stat3SA/SA mice with chronic H. felis infection, which mimics human H. pylori infection in mice, we reveal a key role for pS-STAT3 in promoting Helicobacter-induced gastric pathology. Immunohistochemical staining for infiltrating immune cells and expression analyses of inflammatory genes revealed that gastritis was markedly suppressed in infected Stat3SA/SA mice compared with wild-type mice. Stomach weight and gastric mucosal thickness were also reduced in infected Stat3SA/SA mice, which was associated with reduced proliferative potential of infected Stat3SA/SA gastric mucosa. The suppressed H. felis-induced gastric phenotype of Stat3SA/SA mice was phenocopied upon genetic ablation of signaling by the cytokine IL-11, which promotes gastric tumorigenesis via STAT3. pS-STAT3 dependency by Helicobacter coincided with transcriptional activity on STAT3-regulated genes, rather than mitochondrial and metabolic genes. In the gastric mucosa of mice and patients with gastritis, pS-STAT3 was constitutively expressed irrespective of Helicobacter infection. Collectively, these findings suggest an obligate requirement for IL-11 signaling via constitutive pS-STAT3 in Helicobacter-induced gastric carcinogenesis.


Subject(s)
Gastric Mucosa/metabolism , Gastritis/metabolism , Helicobacter Infections/metabolism , STAT3 Transcription Factor/metabolism , Animals , Gastric Mucosa/pathology , Gastritis/pathology , Helicobacter , Helicobacter Infections/pathology , Humans , Mice , Mitochondria/metabolism , Phosphorylation , Signal Transduction
4.
Cytokine ; 130: 155059, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-32200265

ABSTRACT

Deregulated activation of the latent transcription factor STAT3 has been implicated in the pathogenesis of myeloproliferative and lymphoproliferative hematologic disorders. The uncontrolled activation of STAT3 has traditionally been assigned to its elevated phosphorylation at tyrosine 705 (pY705) and associated nuclear transcriptional activity. By contrast, a transcriptional role for serine 727 phosphorylation (pS727) of STAT3 has recently emerged, suggesting that pS727 may account for the pathological activity of STAT3 in certain disease settings. Here, by coupling pS727-STAT3-deficient Stat3SA/SA mice with a STAT3-driven mouse model (gp130F/F) for myeloproliferative and lymphoproliferative pathologies, we reveal a key role for pS727-STAT3 in promoting multiple hematologic pathologies. The genetic blockade of pS727-STAT3 in gp130F/F:Stat3SA/SA mice ameliorated the neutrophilia, thrombocytosis, splenomegaly and lymphadenopathy that are features of gp130F/F mice. The protection against thrombocytosis in gp130F/F:Stat3SA/SA mice coincided with normalized megakaryopoiesis in both bone marrow and spleen compartments. Interestingly, pS727-STAT3-mediated abnormal lymphopoiesis in gp130F/F mice was more pronounced in lymph nodes compared to thymus, and was characterized by elevated numbers of B cells at the expense of T cells. Furthermore, pS727-STAT3 dependency for these hematologic pathologies coincided with transcriptional activity on STAT3-regulated genes, rather than its effect on mitochondrial and metabolic genes. Collectively, these findings suggest that pS727 plays a critical pathological role in modulating the transcriptional activity of STAT3 in hematologic disorders.

5.
Int J Cancer ; 143(1): 167-178, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29417587

ABSTRACT

Tertiary lymphoid structures (TLSs) display phenotypic and functional characteristics of secondary lymphoid organs, and often develop in tissues affected by chronic inflammation, as well as in certain inflammation-associated cancers where they are prognostic of improved patient survival. However, the mechanisms that govern the development of tumour-associated TLSs remain ill-defined. Here, we observed tumour-associated TLSs in a preclinical mouse model (gp130F/F ) of gastric cancer, where tumourigenesis is dependent on hyperactive STAT3 signalling through the common IL-6 family signalling receptor, gp130. Gastric tumourigenesis was associated with the development of B and T cell-rich submucosal lymphoid aggregates, containing CD21+ cellular networks and high endothelial venules. Temporally, TLS formation coincided with the development of gastric adenomas and induction of homeostatic chemokines including Cxcl13, Ccl19 and Ccl21. Reflecting the requirement of gp130-driven STAT3 signalling for gastric tumourigenesis, submucosal TLS development was also STAT3-dependent, but independent of the cytokine IL-17 which has been linked with lymphoid neogenesis in chronic inflammation and autoimmunity. Interestingly, upregulated lymphoid chemokine expression and TLS formation were also observed in a chronic gastritis model induced by Helicobacter felis infection. Tumour-associated TLSs were also observed in patients with intestinal-type gastric cancer, and a gene signature linked with TLS development in gp130F/F mice was associated with advanced clinical disease, but was not prognostic of patient survival. Collectively, our in vivo data reveal that hyperactive gp130-STAT3 signalling closely links gastric tumourigenesis with lymphoid neogenesis, and while a TLS gene signature was associated with advanced gastric cancer in patients, it did not indicate a favourable prognosis.


Subject(s)
Cytokine Receptor gp130/metabolism , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/metabolism , Tertiary Lymphoid Structures/metabolism , Animals , Chemokines/genetics , Cytokine Receptor gp130/genetics , Disease Models, Animal , Helicobacter Infections/genetics , Helicobacter Infections/immunology , Helicobacter Infections/metabolism , Humans , Mice , Prognosis , STAT3 Transcription Factor/genetics , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Survival Analysis , Tertiary Lymphoid Structures/genetics , Tertiary Lymphoid Structures/immunology
6.
Cytokine ; 92: 118-123, 2017 04.
Article in English | MEDLINE | ID: mdl-28160627

ABSTRACT

Deregulated gp130-dependent STAT3 signalling by the pleiotropic cytokine interleukin (IL)-11 has been implicated in the pathogenesis of gastric cancer (GC), the third most common cancer worldwide. While the IL-11-gp130-STAT3 signalling axis has traditionally been thought to exclusively use the membrane-bound IL-11 receptor (mIL-11R), recent evidence suggests that mIL-11R can be proteolytically cleaved to generate a soluble form (sIL-11R) which can elicit trans-signalling. Since the role of IL-11 trans-signalling in disease pathogenesis is unknown, here we have employed the IL-11-driven gp130F/F spontaneous model of GC to determine whether IL-11 trans-signalling promotes gastric tumourigenesis. sIL-11R protein was detectable in gastric tissue from GC patients, and sIL-11R levels were elevated in tumours of gp130F/F mice compared to matched non-tumours. Among candidate proteases associated with the generation of sIL-11R, ADAM10 and the related metalloprotease ADAM17 were significantly upregulated in tumours of both gp130F/F mice and GC patients compared to matched non-tumour tissues. The genetic blockade of IL-11 trans-signalling in gp130F/F mice upon the transgenic over-expression of the trans-signalling antagonist, sgp130Fc, failed to suppress gastric inflammation and associated tumour growth, and also had no effect on reducing hyper-activated STAT3 levels. Furthermore, a non-essential role for ADAM17 in IL-11-driven gastric tumourigenesis was supported by the observation that the tumour burden was unaffected in gp130F/F:Adam17ex/ex mice in which ADAM17 expression levels have been substantially reduced. Collectively, these findings suggest that classic signalling rather than trans-signalling is the mode by which IL-11 promotes gastric tumourigenesis.


Subject(s)
Interleukin-11/immunology , Neoplasm Proteins/immunology , Signal Transduction/immunology , Stomach Neoplasms/immunology , ADAM10 Protein/genetics , ADAM10 Protein/immunology , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/immunology , Animals , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/immunology , Interleukin-11/genetics , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , Signal Transduction/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
7.
Adv Exp Med Biol ; 1024: 195-212, 2017.
Article in English | MEDLINE | ID: mdl-28921471

ABSTRACT

Toll-like receptors (TLRs) are one of the best characterised families of pattern recognition receptors (PRRs) and play a critical role in the host defence to infection. Accumulating evidence indicates that TLRs also participate in maintaining tissue homeostasis by controlling inflammation and tissue repair, as well as promoting antitumour effects via activation and modulation of adaptive immune responses. TLR agonists have successfully been exploited to ameliorate the efficacy of various cancer therapies. In this chapter, we will discuss the rationales of using TLR agonists as adjuvants to cancer treatments and summarise the recent findings of preclinical and clinical studies of TLR agonist-based cancer therapies.


Subject(s)
Adjuvants, Immunologic , Cancer Vaccines/immunology , Neoplasms/prevention & control , Toll-Like Receptors/agonists , Humans , Toll-Like Receptors/immunology
8.
Cytokine ; 87: 20-5, 2016 11.
Article in English | MEDLINE | ID: mdl-27269970

ABSTRACT

The JAK-STAT3 signaling pathway is engaged by many cytokines and growth factor stimuli to control diverse biological processes including proliferation, angiogenesis, survival, immune modulation, and metabolism. For over two decades it has been accepted that STAT3-dependent biology is due to its potency as a transcription factor capable of regulating the expression of many hundreds of genes. However, recent evidence of non-canonical and non-genomic activities of STAT3 has emerged. The most exciting of these activities is its capacity to translocate into the mitochondria where it regulates the activity of the electron transport chain and the opening of the mitochondrial permeability transition pore. These have broad consequences including cell survival and the production of reactive oxygen species and ATP in both normal tissue and under pathological conditions. Despite these fascinating observations there are many key unanswered questions about the mechanism of STAT mitochondrial activity.


Subject(s)
Mitochondria/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Animals , Calcium/metabolism , Electron Transport , Humans , Mice , Neoplasms/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism
9.
Dev Cell ; 59(7): 898-910.e6, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38366599

ABSTRACT

The liver exhibits a remarkable capacity to regenerate following injury. Despite this unique attribute, toxic injury is a leading cause of liver failure. The temporal processes by which the liver senses injury and initiates regeneration remain unclear. Here, we developed a transgenic zebrafish model wherein hepatocyte-specific expression of uracil phosphoribosyltransferase (UPRT) enabled the implementation of SLAM-ITseq to investigate the nascent transcriptome during initiation of liver injury and regeneration. Using this approach, we identified a rapid metabolic transition from the fed to the fasted state that was followed by induction of the nuclear erythroid 2-related factor (Nrf2) antioxidant program. We find that activation of Nrf2 in hepatocytes is required to induce the pentose phosphate pathway (PPP) and improve survival following liver injury. Mechanistically, we demonstrate that inhibition of the PPP disrupts nucleotide biosynthesis to prevent liver regeneration. Together, these studies provide fundamental insights into the mechanism by which early metabolic adaptation to injury facilitates tissue regeneration.


Subject(s)
Liver Regeneration , Pentose Phosphate Pathway , Animals , Pentose Phosphate Pathway/genetics , Liver Regeneration/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Liver/metabolism
10.
Nat Genet ; 56(6): 1181-1192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38769457

ABSTRACT

Eukaryotic transcription factors (TFs) activate gene expression by recruiting cofactors to promoters. However, the relationships between TFs, promoters and their associated cofactors remain poorly understood. Here we combine GAL4-transactivation assays with comparative CRISPR-Cas9 screens to identify the cofactors used by nine different TFs and core promoters in human cells. Using this dataset, we associate TFs with cofactors, classify cofactors as ubiquitous or specific and discover transcriptional co-dependencies. Through a reductionistic, comparative approach, we demonstrate that TFs do not display discrete mechanisms of activation. Instead, each TF depends on a unique combination of cofactors, which influences distinct steps in transcription. By contrast, the influence of core promoters appears relatively discrete. Different promoter classes are constrained by either initiation or pause-release, which influences their dynamic range and compatibility with cofactors. Overall, our comparative cofactor screens characterize the interplay between TFs, cofactors and core promoters, identifying general principles by which they influence transcription.


Subject(s)
Promoter Regions, Genetic , Transcription Factors , Transcriptional Activation , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , CRISPR-Cas Systems , Transcription, Genetic , Gene Expression Regulation
11.
Cell Mol Gastroenterol Hepatol ; 14(3): 567-586, 2022.
Article in English | MEDLINE | ID: mdl-35716851

ABSTRACT

BACKGROUND & AIMS: Gastric cancer (GC) is strongly linked with chronic gastritis after Helicobacter pylori infection. Toll-like receptors (TLRs) are key innate immune pathogenic sensors that mediate chronic inflammatory and oncogenic responses. Here, we investigated the role of TLR9 in the pathogenesis of GC, including Helicobacter infection. METHODS: TLR9 gene expression was profiled in gastric tissues from GC and gastritis patients and from the spontaneous gp130F/F GC mouse model and chronic H felis-infected wild-type (WT) mice. Gastric pathology was compared in gp130F/F and H felis infection models with or without genetic ablation of Tlr9. The impact of Tlr9 targeting on signaling cascades implicated in inflammation and tumorigenesis (eg, nuclear factor kappa B, extracellular signal-related kinase, and mitogen-activated protein kinase) was assessed in vivo. A direct growth-potentiating effect of TLR9 ligand stimulation on human GC cell lines and gp130F/F primary gastric epithelial cells was also evaluated. RESULTS: TLR9 expression was up-regulated in Helicobacter-infected gastric tissues from GC and gastritis patients and gp130F/F and H felis-infected WT mice. Tlr9 ablation suppressed initiation of tumorigenesis in gp130F/F:Tlr9-/- mice by abrogating gastric inflammation and cellular proliferation. Tlr9-/- mice were also protected against H felis-induced gastric inflammation and hyperplasia. The suppressed gastric pathology upon Tlr9 ablation in both mouse models associated with attenuated nuclear factor kappa B and, to a lesser extent, extracellular signal-related kinase, mitogen-activated protein kinase signaling. TLR9 ligand stimulation of human GC cells and gp130F/F GECs augmented their proliferation and viability. CONCLUSIONS: Our data reveal that TLR9 promotes the initiating stages of GC and facilitates Helicobacter-induced gastric inflammation and hyperplasia, thus providing in vivo evidence for TLR9 as a candidate therapeutic target in GC.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Animals , Carcinogenesis/pathology , Cell Proliferation , Cytokine Receptor gp130/metabolism , Gastric Mucosa/pathology , Gastritis/pathology , Helicobacter Infections/metabolism , Helicobacter pylori/metabolism , Humans , Hyperplasia/pathology , Inflammation/pathology , Ligands , Mice , NF-kappa B/metabolism , Stomach Neoplasms/pathology , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
12.
Oncogene ; 41(6): 809-823, 2022 02.
Article in English | MEDLINE | ID: mdl-34857889

ABSTRACT

The oncogenic potential of the latent transcription factor signal transducer and activator of transcription (STAT)3 in many human cancers, including lung cancer, has been largely attributed to its nuclear activity as a tyrosine-phosphorylated (pY705 site) transcription factor. By contrast, an alternate mitochondrial pool of serine phosphorylated (pS727 site) STAT3 has been shown to promote tumourigenesis by regulating metabolic processes, although this has been reported in only a restricted number of mutant RAS-addicted neoplasms. Therefore, the involvement of STAT3 serine phosphorylation in the pathogenesis of most cancer types, including mutant KRAS lung adenocarcinoma (LAC), is unknown. Here, we demonstrate that LAC is suppressed in oncogenic KrasG12D-driven mouse models engineered for pS727-STAT3 deficiency. The proliferative potential of the transformed KrasG12D lung epithelium, and mutant KRAS human LAC cells, was significantly reduced upon pS727-STAT3 deficiency. Notably, we uncover the multifaceted capacity of constitutive pS727-STAT3 to metabolically reprogramme LAC cells towards a hyper-proliferative state by regulating nuclear and mitochondrial (mt) gene transcription, the latter via the mtDNA transcription factor, TFAM. Collectively, our findings reveal an obligate requirement for the transcriptional activity of pS727-STAT3 in mutant KRAS-driven LAC with potential to guide future therapeutic targeting approaches.


Subject(s)
Serine
13.
Oncogene ; 41(1): 26-36, 2022 01.
Article in English | MEDLINE | ID: mdl-34667277

ABSTRACT

The EMT (epithelial-to-mesenchymal-transition) subtype of gastric cancer (GC) is associated with poor treatment responses and unfavorable clinical outcomes. Despite the broad physiological roles of the micro-RNA (miR)-200 family, they largely serve to maintain the overall epithelial phenotype. However, during late-stage gastric tumorigenesis, members of the miR-200 family are markedly suppressed, resulting in the transition to the mesenchymal state and the acquisition of invasive properties. As such, the miR-200 family represents a robust molecular marker of EMT, and subsequently, disease severity and prognosis. Most reports have studied the effect of single miR-200 family member knockdown. Here, we employ a multiplex CRISPR/Cas9 system to generate a complete miR-200 family knockout (FKO) to investigate their collective and summative role in regulating key cellular processes during GC pathogenesis. Genetic deletion of all miR-200s in the human GC cell lines induced potent morphological alterations, G1/S cell cycle arrest, increased senescence-associated ß-galactosidase (SA-ß-Gal) activity, and aberrant metabolism, collectively resembling the senescent phenotype. Coupling RNA-seq data with publicly available datasets, we revealed a clear separation of senescent and non-senescent states amongst FKO cells and control cells, respectively. Further analysis identified key senescence-associated secretory phenotype (SASP) components in FKO cells and a positive feedback loop for maintenance of the senescent state controlled by activation of TGF-ß and TNF-α pathways. Finally, we showed that miR-200 FKO associated senescence in cancer epithelial cells significantly recruited stromal cells in the tumor microenvironment. Our work has identified a new role of miR-200 family members which function as an integrated unit serving to link senescence with EMT, two major conserved biological processes.


Subject(s)
Cellular Senescence/immunology , Epithelial-Mesenchymal Transition/immunology , Gene Expression Regulation, Neoplastic/genetics , MicroRNAs/metabolism , Stomach Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Humans , Prognosis , Stomach Neoplasms/pathology , Tumor Microenvironment
14.
Nat Commun ; 11(1): 3816, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732870

ABSTRACT

Detection of microbial components such as lipopolysaccharide (LPS) by Toll-like receptor 4 (TLR4) on macrophages induces a robust pro-inflammatory response that is dependent on metabolic reprogramming. These innate metabolic changes have been compared to aerobic glycolysis in tumour cells. However, the mechanisms by which TLR4 activation leads to mitochondrial and glycolytic reprogramming are unknown. Here we show that TLR4 activation induces a signalling cascade recruiting TRAF6 and TBK-1, while TBK-1 phosphorylates STAT3 on S727. Using a genetically engineered mouse model incapable of undergoing STAT3 Ser727 phosphorylation, we show ex vivo and in vivo that STAT3 Ser727 phosphorylation is critical for LPS-induced glycolytic reprogramming, production of the central immune response metabolite succinate and inflammatory cytokine production in a model of LPS-induced inflammation. Our study identifies non-canonical STAT3 activation as the crucial signalling intermediary for TLR4-induced glycolysis, macrophage metabolic reprogramming and inflammation.


Subject(s)
Interleukin-1beta/metabolism , Macrophages/metabolism , STAT3 Transcription Factor/metabolism , Toll-Like Receptor 4/metabolism , Animals , Cell Line , Cells, Cultured , Gene Expression , Glycolysis/drug effects , Inflammation/genetics , Inflammation/metabolism , Interleukin-1beta/genetics , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , STAT3 Transcription Factor/genetics , Serine/genetics , Serine/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptor 4/genetics
15.
Cancer Res ; 79(20): 5272-5287, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31481496

ABSTRACT

Deregulated activation of the latent oncogenic transcription factor STAT3 in many human epithelial malignancies, including gastric cancer, has invariably been associated with its canonical tyrosine phosphorylation and enhanced transcriptional activity. By contrast, serine phosphorylation (pS) of STAT3 can augment its nuclear transcriptional activity and promote essential mitochondrial functions, yet the role of pS-STAT3 among epithelial cancers is ill-defined. Here, we reveal that genetic ablation of pS-STAT3 in the gp130 F/F spontaneous gastric cancer mouse model and human gastric cancer cell line xenografts abrogated tumor growth that coincided with reduced proliferative potential of the tumor epithelium. Microarray gene expression profiling demonstrated that the suppressed gastric tumorigenesis in pS-STAT3-deficient gp130 F/F mice associated with reduced transcriptional activity of STAT3-regulated gene networks implicated in cell proliferation and migration, inflammation, and angiogenesis, but not mitochondrial function or metabolism. Notably, the protumorigenic activity of pS-STAT3 aligned with its capacity to primarily augment RNA polymerase II-mediated transcriptional elongation, but not initiation, of STAT3 target genes. Furthermore, by using a combinatorial in vitro and in vivo proteomics approach based on the rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) assay, we identified RuvB-like AAA ATPase 1 (RUVBL1/Pontin) and enhancer of rudimentary homolog (ERH) as interacting partners of pS-STAT3 that are pivotal for its transcriptional activity on STAT3 target genes. Collectively, these findings uncover a hitherto unknown transcriptional role and obligate requirement for pS-STAT3 in gastric cancer that could be extrapolated to other STAT3-driven cancers. SIGNIFICANCE: These findings reveal a new transcriptional role and mandatory requirement for constitutive STAT3 serine phosphorylation in gastric cancer.


Subject(s)
Neoplasm Proteins/physiology , RNA Polymerase II/metabolism , STAT3 Transcription Factor/physiology , Stomach Neoplasms/genetics , Transcription, Genetic , Animals , Carcinogenesis , Cell Cycle Proteins/physiology , Cell Line, Tumor , Cells, Cultured , Cytokine Receptor gp130/deficiency , DNA Helicases/physiology , Epithelial Cells , Gastric Mucosa/cytology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Heterografts , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Neoplasm Transplantation , Phosphorylation , Phosphoserine/chemistry , Protein Processing, Post-Translational , Radiation Chimera , Specific Pathogen-Free Organisms , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Transcription Factors/physiology , Tumor Burden
16.
EMBO Mol Med ; 11(4)2019 04.
Article in English | MEDLINE | ID: mdl-30833304

ABSTRACT

Oncogenic KRAS mutations are major drivers of lung adenocarcinoma (LAC), yet the direct therapeutic targeting of KRAS has been problematic. Here, we reveal an obligate requirement by oncogenic KRAS for the ADAM17 protease in LAC In genetically engineered and xenograft (human cell line and patient-derived) KrasG12D-driven LAC models, the specific blockade of ADAM17, including with a non-toxic prodomain inhibitor, suppressed tumor burden by reducing cellular proliferation. The pro-tumorigenic activity of ADAM17 was dependent upon its threonine phosphorylation by p38 MAPK, along with the preferential shedding of the ADAM17 substrate, IL-6R, to release soluble IL-6R that drives IL-6 trans-signaling via the ERK1/2 MAPK pathway. The requirement for ADAM17 in KrasG12D-driven LAC was independent of bone marrow-derived immune cells. Furthermore, in KRAS mutant human LAC, there was a significant positive correlation between augmented phospho-ADAM17 levels, observed primarily in epithelial rather than immune cells, and activation of ERK and p38 MAPK pathways. Collectively, these findings identify ADAM17 as a druggable target for oncogenic KRAS-driven LAC and provide the rationale to employ ADAM17-based therapeutic strategies for targeting KRAS mutant cancers.


Subject(s)
ADAM17 Protein/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Receptors, Interleukin-6/metabolism , ADAM17 Protein/antagonists & inhibitors , Animals , Cell Line, Tumor , Genotype , Humans , Lung Neoplasms/pathology , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mutation , Phosphorylation , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
17.
Int Immunopharmacol ; 59: 375-383, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29689497

ABSTRACT

Toll-like receptor (TLR) 2 is a key regulator of innate immune responses and has been shown to play an important role in inflammation-associated cancers. In this study, we aimed to evaluate the role of TLR2 in colorectal cancer (CRC). We demonstrated that TLR2 mRNA and protein expression was significantly upregulated in tumors from CRC patients and indicated poor prognosis. Using the TLR2 agonist Pam3Cys (P3C) to activate TLR2 signaling in human CRC cell lines, we showed that TLR2 drives cellular proliferation, which was dependent upon PI3K/Akt and NF-κB signaling pathways and was associated with the upregulation of anti-apoptotic genes BCL2A1, WISP1 and BIRC3. Likewise, pharmacological blockade of PI3K/Akt and NF-κB pathways mitigated the CRC pro-survival effects of TLR2 stimulation. Furthermore, genetic ablation of TLR2 using CRISPR/Cas9 suppressed CRC cell proliferation, invasion and migration. Taken together, these findings demonstrate that TLR2 plays an important role in colorectal tumorigenesis and may represent a promising therapeutic target in CRC.


Subject(s)
Colorectal Neoplasms/metabolism , Toll-Like Receptor 2/metabolism , Animals , Baculoviral IAP Repeat-Containing 3 Protein/genetics , CCN Intercellular Signaling Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/genetics , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Minor Histocompatibility Antigens/genetics , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Messenger/metabolism , Signal Transduction , Toll-Like Receptor 2/genetics
18.
Clin Cancer Res ; 24(6): 1459-1472, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29330205

ABSTRACT

Purpose: The majority of gastric cancer patients are diagnosed with late-stage disease, for which distinct molecular subtypes have been identified that are potentially amenable to targeted therapies. However, there exists no molecular classification system with prognostic power for early-stage gastric cancer (EGC) because the molecular events promoting gastric cancer initiation remain ill-defined.Experimental Design: miRNA microarrays were performed on gastric tissue from the gp130F/F preclinical EGC mouse model, prior to tumor initiation. Computation prediction algorithms were performed on multiple data sets and independent gastric cancer patient cohorts. Quantitative real-time PCR expression profiling was undertaken in gp130F/F-based mouse strains and human gastric cancer cells genetically engineered for suppressed activation of the oncogenic latent transcription factor STAT3. Human gastric cancer cells with modulated expression of the miR-200 family member miR-429 were also assessed for their proliferative response.Results: Increased expression of miR-200 family members is associated with both tumor initiation in a STAT3-dependent manner in gp130F/F mice and EGC (i.e., stage IA) in patient cohorts. Overexpression of miR-429 also elicited contrasting pro- and antiproliferative responses in human gastric cancer cells depending on their cellular histologic subtype. We also identified a miR-200 family-regulated 15-gene signature that integrates multiple key current indicators of EGC, namely tumor invasion depth, differentiation, histology, and stage, and provides superior predictive power for overall survival compared with each EGC indicator alone.Conclusions: Collectively, our discovery of a STAT3-regulated, miR-200 family-associated gene signature specific for EGC, with predictive power, provides a molecular rationale to classify and stratify EGC patients for endoscopic treatment. Clin Cancer Res; 24(6); 1459-72. ©2018 AACR.


Subject(s)
Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , STAT3 Transcription Factor/genetics , Stomach Neoplasms/genetics , Animals , Cell Line, Tumor , Cohort Studies , Cytokine Receptor gp130/genetics , Cytokine Receptor gp130/metabolism , HEK293 Cells , Humans , Kaplan-Meier Estimate , Mice, Knockout , Neoplasm Staging , Prognosis , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL