Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Math Phys Eng Sci ; 476(2238): 20200077, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32831591

ABSTRACT

Recent reconstructions of total solar irradiance (TSI) postulate that quiet-Sun variations could give significant changes to the solar power input to Earth's climate (radiative climate forcings of 0.7-1.1 W m-2 over 1700-2019) arising from changes in quiet-Sun magnetic fields that have not, as yet, been observed. Reconstructions without such changes yield solar forcings that are smaller by a factor of more than 10. We study the quiet-Sun TSI since 1995 for three reasons: (i) this interval shows rapid decay in average solar activity following the grand solar maximum in 1985 (such that activity in 2019 was broadly equivalent to that in 1900); (ii) there is improved consensus between TSI observations; and (iii) it contains the first modelling of TSI that is independent of the observations. Our analysis shows that the most likely upward drift in quiet-Sun radiative forcing since 1700 is between +0.07 and -0.13 W m-2. Hence, we cannot yet discriminate between the quiet-Sun TSI being enhanced or reduced during the Maunder and Dalton sunspot minima, although there is a growing consensus from the combinations of models and observations that it was slightly enhanced. We present reconstructions that add quiet-Sun TSI and its uncertainty to models that reconstruct the effects of sunspots and faculae.

2.
Sci Rep ; 7: 45257, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28349934

ABSTRACT

Sporadic solar energetic particle (SEP) events affect the Earth's atmosphere and environment, in particular leading to depletion of the protective ozone layer in the Earth's atmosphere, and pose potential technological and even life hazards. The greatest SEP storm known for the last 11 millennia (the Holocene) occurred in 774-775 AD, serving as a likely worst-case scenario being 40-50 times stronger than any directly observed one. Here we present a systematic analysis of the impact such an extreme event can have on the Earth's atmosphere. Using state-of-the-art cosmic ray cascade and chemistry-climate models, we successfully reproduce the observed variability of cosmogenic isotope 10Be, around 775 AD, in four ice cores from Greenland and Antarctica, thereby validating the models in the assessment of this event. We add to prior conclusions that any nitrate deposition signal from SEP events remains too weak to be detected in ice cores by showing that, even for such an extreme solar storm and sub-annual data resolution, the nitrate deposition signal is indistinguishable from the seasonal cycle. We show that such a severe event is able to perturb the polar stratosphere for at least one year, leading to regional changes in the surface temperature during northern hemisphere winters.

SELECTION OF CITATIONS
SEARCH DETAIL