Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Diabetologia ; 67(9): 1865-1876, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38922416

ABSTRACT

AIMS/HYPOTHESIS: Use of genetic risk scores (GRS) may help to distinguish between type 1 diabetes and type 2 diabetes, but less is known about whether GRS are associated with disease severity or progression after diagnosis. Therefore, we tested whether GRS are associated with residual beta cell function and glycaemic control in individuals with type 1 diabetes. METHODS: Immunochip arrays and TOPMed were used to genotype a cross-sectional cohort (n=479, age 41.7 ± 14.9 years, duration of diabetes 16.0 years [IQR 6.0-29.0], HbA1c 55.6 ± 12.2 mmol/mol). Several GRS, which were originally developed to assess genetic risk of type 1 diabetes (GRS-1, GRS-2) and type 2 diabetes (GRS-T2D), were calculated. GRS-C1 and GRS-C2 were based on SNPs that have previously been shown to be associated with residual beta cell function. Regression models were used to investigate the association between GRS and residual beta cell function, assessed using the urinary C-peptide/creatinine ratio, and the association between GRS and continuous glucose monitor metrics. RESULTS: Higher GRS-1 and higher GRS-2 both showed a significant association with undetectable UCPCR (OR 0.78; 95% CI 0.69, 0.89 and OR 0.84: 95% CI 0.75, 0.93, respectively), which were attenuated after correction for sex and age of onset (GRS-2) and disease duration (GRS-1). Higher GRS-C2 was associated with detectable urinary C-peptide/creatinine ratio (≥0.01 nmol/mmol) after correction for sex and age of onset (OR 6.95; 95% CI 1.19, 40.75). A higher GRS-T2D was associated with less time below range (TBR) (OR for TBR<4% 1.41; 95% CI 1.01 to 1.96) and lower glucose coefficient of variance (ß -1.53; 95% CI -2.76, -0.29). CONCLUSIONS/INTERPRETATION: Diabetes-related GRS are associated with residual beta cell function in individuals with type 1 diabetes. These findings suggest some genetic contribution to preservation of beta cell function.


Subject(s)
Diabetes Mellitus, Type 1 , Genetic Predisposition to Disease , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 1/genetics , Insulin-Secreting Cells/metabolism , Male , Female , Adult , Cross-Sectional Studies , Middle Aged , Polymorphism, Single Nucleotide , Diabetes Mellitus, Type 2/genetics , Blood Glucose/metabolism , Genotype , Risk Factors , Genetic Risk Score
2.
Gut ; 71(8): 1577-1587, 2022 08.
Article in English | MEDLINE | ID: mdl-34697034

ABSTRACT

OBJECTIVE: Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic Anaerobutyricum soehngenii to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of A. soehngenii L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS. DESIGN: In this randomised double-blind placebo-controlled cross-over study, 12 male subjects with MetS received duodenal infusions of A. soehngenii/ placebo and underwent duodenal biopsies, mixed meal tests (6 hours postinfusion) and 24-hour continuous glucose monitoring. RESULTS: A. soehngenii treatment provoked a markedly increased postprandial excursion of the insulinotropic hormone glucagon-like peptide 1 (GLP-1) and an elevation of plasma secondary bile acids, which were positively associated with GLP-1 levels. Moreover, A. soehngenii treatment robustly shaped the duodenal expression of 73 genes, with the highest fold induction in the expression of regenerating islet-protein 1B (REG1B)-encoding gene. Strikingly, duodenal REG1B expression positively correlated with GLP-1 levels and negatively correlated with peripheral glucose variability, which was significantly diminished in the 24 hours following A. soehngenii intake. Mechanistically, Reg1B expression is induced upon sensing butyrate or bacterial peptidoglycan. Importantly, A. soehngenii duodenal administration was safe and well tolerated. CONCLUSIONS: A single dose of A. soehngenii improves peripheral glycaemic control within 24 hours; it specifically stimulates intestinal GLP-1 production and REG1B expression. Further studies are needed to delineate the specific pathways involved in REG1B induction and function in insulin sensitivity. TRIAL REGISTRATION NUMBER: NTR-NL6630.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Metabolic Syndrome , Blood Glucose/metabolism , Blood Glucose Self-Monitoring , Clostridiales , Cross-Over Studies , Diabetes Mellitus, Type 2/drug therapy , Double-Blind Method , Glucagon-Like Peptide 1/metabolism , Glycemic Control , Humans , Insulin/metabolism , Male , Metabolic Syndrome/genetics , Transcriptome
3.
Curr Opin Lipidol ; 32(1): 38-54, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33332920

ABSTRACT

PURPOSE OF REVIEW: Alterations in the gut microbiome composition or function are associated with risk factors for cardiometabolic diseases, including hypertension, hyperlipidemia and hyperglycemia. Based on recent evidence that also oral medications used to treat these conditions could alter the gut microbiome composition and function and, vice versa, that the gut microbiome could affect the efficacy of these treatments, we reviewed the literature on these observed interactions. RECENT FINDINGS: While the interaction of metformin with the gut microbiome has been studied most, other drugs that target cardiometabolic risk are gaining attention and often showed associations with alterations in microbiome-related features, including alterations in specific microbial taxa or pathways, microbiome composition or microbiome-derived metabolites, while the gut microbiome was also involved in drug metabolism and drug efficacy. As for metformin, for some of them even a potential therapeutic effect via the gut microbiome is postulated. However, exact mechanisms remain to be elucidated. SUMMARY: There is growing interest in clarifying the interactions between the gut microbiome and drugs to treat hypertension, hyperlipidemia and hyperglycemia as well as the first pass effect of microbiome on drug efficacy. While mostly analysed in animal models, also human studies are gaining more and more traction. Improving the understanding of the gut microbiome drug interaction can provide clinical directions for therapy by optimizing drug efficacy or providing new targets for drug development.


Subject(s)
Gastrointestinal Microbiome , Metformin , Animals , Hyperlipidemias , Hypertension
4.
Genome Med ; 16(1): 41, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38509598

ABSTRACT

BACKGROUND: The occurrence of metabolic syndrome (MetS) and the gut microbiota composition are known to differ across ethnicities yet how these three factors are interwoven is unknown. Also, it is unknown what the relative contribution of the gut microbiota composition is to each MetS component and whether this differs between ethnicities. We therefore determined the occurrence of MetS and its components in the multi-ethnic HELIUS cohort and tested the overall and ethnic-specific associations with the gut microbiota composition. METHODS: We included 16,209 treatment naïve participants of the HELIUS study, which were of Dutch, African Surinamese, South-Asian Surinamese, Ghanaian, Turkish, and Moroccan descent to analyze MetS and its components across ethnicities. In a subset (n = 3443), the gut microbiota composition (16S) was associated with MetS outcomes using linear and logistic regression models. RESULTS: A differential, often sex-dependent, prevalence of MetS components and their combinations were observed across ethnicities. Increased blood pressure was commonly seen especially in Ghanaians, while South-Asian Surinamese and Turkish had higher MetS rates in general and were characterized by worse lipid-related measures. Regarding the gut microbiota, when ethnic-independent associations were assumed, a higher α-diversity, higher abundance of several ASVs (mostly for waist and triglyceride-related outcomes) and a trophic network of ASVs of Ruminococcaceae, Christensenellaceae, and Methanobrevibacter (RCM) bacteria were associated with better MetS outcomes. Statistically significant ethnic-specific associations were however noticed for α-diversity and the RCM trophic network. Associations were significant in the Dutch but not always in all other ethnicities. In Ghanaians, a higher α-diversity and RCM network abundance showed an aberrant positive association with high blood pressure measures compared to the other ethnicities. Even though adjustment for socioeconomic status-, lifestyle-, and diet-related variables often attenuated the effect size and/or the statistical significance of the ethnic-specific associations, an overall similar pattern across outcomes and ethnicities remained. CONCLUSIONS: The occurrence of MetS characteristics among ethnicities is heterogeneous. Both ethnic-independent and ethnic-specific associations were identified between the gut microbiota and MetS outcomes. Across multiple ethnicities, a one-size-fits-all approach may thus be reconsidered in regard to both the definition and/or treatment of MetS and its relation to the gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Humans , Ethnicity , Metabolic Syndrome/ethnology , Male , Female
5.
Gut Microbes ; 14(1): 2111951, 2022.
Article in English | MEDLINE | ID: mdl-35984746

ABSTRACT

Hyperglycemia and type 2 diabetes (T2D) are caused by failure of pancreatic beta cells. The role of the gut microbiota in T2D has been studied, but causal links remain enigmatic. Obese individuals with or without T2D were included from two independent Dutch cohorts. Human data were translated in vitro and in vivo by using pancreatic islets from C57BL6/J mice and by injecting flagellin into obese mice. Flagellin is part of the bacterial locomotor appendage flagellum, present in gut bacteria including Enterobacteriaceae, which we show to be more abundant in the gut of individuals with T2D. Subsequently, flagellin induces a pro-inflammatory response in pancreatic islets mediated by the Toll-like receptor (TLR)-5 expressed on resident islet macrophages. This inflammatory response is associated with beta-cell dysfunction, characterized by reduced insulin gene expression, impaired proinsulin processing and stress-induced insulin hypersecretion in vitro and in vivo in mice. We postulate that increased systemically disseminated flagellin in T2D is a contributing factor to beta-cell failure in time and represents a novel therapeutic target.


Subject(s)
Diabetes Mellitus, Type 2 , Flagellin , Gastrointestinal Microbiome , Insulin-Secreting Cells , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Diabetes Mellitus, Type 2/microbiology , Flagellin/genetics , Flagellin/metabolism , Humans , Inflammation/metabolism , Insulin , Insulin-Secreting Cells/metabolism , Mice
6.
Nutrients ; 13(9)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34579166

ABSTRACT

It is currently unknown whether associations between gut microbiota composition and type 2 diabetes (T2D) differ according to the ethnic background of individuals. Thus, we studied these associations in participants from two ethnicities characterized by a high T2D prevalence and living in the same geographical area, using the Healthy Life In Urban Settings (HELIUS) study. We included 111 and 128 T2D participants on metformin (Met-T2D), 78 and 49 treatment-naïve T2D (TN-T2D) participants, as well as a 1:1 matched group of healthy controls from, respectively, African Surinamese and South-Asian Surinamese descent. Fecal microbiome profiles were obtained through 16S rRNA gene sequencing. Univariate and machine learning analyses were used to explore the associations between T2D and the composition and function of the gut microbiome in both ethnicities, comparing Met-T2D and TN-T2D participants to their respective healthy control. We found a lower α-diversity for South-Asian Surinamese TN-T2D participants but no significant associations between TN-T2D status and the abundance of bacterial taxa or functional pathways. In African Surinamese participants, we did not find any association between TN-T2D status and the gut microbiome. With respect to Met-T2D participants, we identified several bacterial taxa and functional pathways with a significantly altered abundance in both ethnicities. More alterations were observed in South-Asian Surinamese. Some altered taxa and pathways observed in both ethnicities were previously related to metformin use. This included a strong negative association between the abundance of Romboutsia and Met-T2D status. Other bacterial taxa were consistent with previous observations in T2D, including reduced butyrate producers such as Anaerostipes hadrus. Hence, our results highlighted both shared and unique gut microbial biomarkers of Met-T2D in individuals from different ethnicities but living in the same geographical area. Future research using higher-resolution shotgun sequencing is needed to clarify the role of ethnicity in the association between T2D and gut microbiota composition.


Subject(s)
Asian People/statistics & numerical data , Black People/statistics & numerical data , Diabetes Mellitus, Type 2/ethnology , Gastrointestinal Microbiome , Case-Control Studies , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/microbiology , Female , Gastrointestinal Microbiome/genetics , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Suriname
7.
Atherosclerosis ; 321: 14-20, 2021 03.
Article in English | MEDLINE | ID: mdl-33601267

ABSTRACT

BACKGROUND AND AIMS: Familial hypercholesterolemia (FH) is caused by pathogenic variants in LDLR, APOB, or PCSK9 genes (designated FH+). However, a significant number of clinical FH patients do not carry these variants (designated FH-). Here, we investigated whether variants in intronic regions of LDLR attribute to FH by affecting pre-mRNA splicing. METHODS: LDLR introns are partly covered in routine sequencing of clinical FH patients using next-generation sequencing. Deep intronic variants, >20 bp from intron-exon boundary, were considered of interest once (a) present in FH- patients (n = 909) with LDL-C >7 mmol/L (severe FH-) or after in silico analysis in patients with LDL-C >5 mmol/L (moderate FH-) and b) absent in FH + patients (control group). cDNA analysis and co-segregation analysis were performed to assess pathogenicity of the identified variants. RESULTS: Three unique variants were present in the severe FH- group. One of these was the previously described likely pathogenic variant c.2140+103G>T. Three additional variants were selected based on in silico analyses in the moderate FH- group. One of these variants, c.2141-218G>A, was found to result in a pseudo-exon inclusion, producing a premature stop codon. This variant co-segregated with the hypercholesterolemic phenotype. CONCLUSIONS: Through a screening approach, we identified a deep intronic variant causal for FH. This finding indicates that filtering intronic variants in FH- patients for the absence in FH + patients might enrich for true FH-causing variants and suggests that intronic regions of LDLR need to be considered for sequencing in FH- patients.


Subject(s)
Hyperlipoproteinemia Type II , Receptors, LDL/genetics , High-Throughput Nucleotide Sequencing , Humans , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/genetics , Proprotein Convertase 9/genetics
SELECTION OF CITATIONS
SEARCH DETAIL