Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Am J Respir Crit Care Med ; 206(9): 1128-1139, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35771569

ABSTRACT

Rationale: Treatment options for idiopathic pulmonary fibrosis (IPF) are limited. Objectives: To evaluate the efficacy and safety of BG00011, an anti-αvß6 IgG1 monoclonal antibody, in the treatment of patients with IPF. Methods: In a phase IIb randomized, double-blind, placebo-controlled trial, patients with IPF (FVC ⩾50% predicted, on or off background therapy) were randomized 1:1 to once-weekly subcutaneous BG00011 56 mg or placebo. The primary endpoint was FVC change from baseline at Week 52. Because of early trial termination (imbalance in adverse events and lack of clinical benefit), endpoints were evaluated at Week 26 as an exploratory analysis. Measurements and Main Results: One hundred six patients were randomized and received at least one dose of BG00011 (n = 54) or placebo (n = 52). At Week 26, there was no significant difference in FVC change from baseline between patients who received BG00011 (n = 20) or placebo (n = 23), least squares mean (SE) -0.097 L (0.0600) versus -0.056 L (0.0593), respectively (P = 0.268). However, after Week 26, patients in the BG00011 group showed a worsening trend. Eight (44.4%) of 18 who received BG00011 and 4 (18.2%) of 22 who received placebo showed worsening of fibrosis on high-resolution computed tomography at the end of treatment. IPF exacerbation/or progression was reported in 13 patients (all in the BG00011 group). Serious adverse events occurred more frequently in BG00011 patients, including four deaths. Conclusions: The results do not support the continued clinical development of BG00011. Further research is warranted to identify new treatment strategies that modify inflammatory and fibrotic pathways in IPF. Clinical trial registered with www.clinicaltrials.gov (NCT03573505).


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Antibodies, Monoclonal/therapeutic use , Treatment Outcome , Double-Blind Method , Immunoglobulin G
2.
Ann Rheum Dis ; 78(3): 413-420, 2019 03.
Article in English | MEDLINE | ID: mdl-30552176

ABSTRACT

OBJECTIVE: To assess the efficacy, safety, pharmacokinetics and pharmacodynamics of the anti-interleukin (IL)-1α/ß dual variable domain immunoglobulin lutikizumab (ABT-981) in erosive hand osteoarthritis (HOA). METHODS: Patients with ≥1 erosive and ≥3 tender and/or swollen hand joints were randomised to placebo or lutikizumab 200 mg subcutaneously every 2 weeks for 24 weeks. The primary endpoint was change in Australian/Canadian Osteoarthritis Hand Index (AUSCAN) pain subdomain score from baseline to 16 weeks. At baseline and week 26, subjects had bilateral hand radiographs and MRI of the hand with the greatest number of baseline tender and/or swollen joints. Continuous endpoints were assessed using analysis of covariance models, with treatment and country as main factors and baseline measurements as covariates. RESULTS: Of 132 randomised subjects, 1 received no study drug and 110 completed the study (placebo, 61/67 (91%); lutikizumab, 49/64 (77%)). AUSCAN pain was not different among subjects treated with lutikizumab versus placebo at week 16 (least squares mean difference, 1.5 (95% CI -1.9 to 5.0)). Other clinical and imaging endpoints were not different between lutikizumab and placebo. Lutikizumab significantly decreased serum high-sensitivity C reactive protein levels, IL-1α and IL-1ß levels, and blood neutrophils. Lutikizumab pharmacokinetics were consistent with phase I studies and not affected by antidrug antibodies. Injection site reactions and neutropaenia were more common in the lutikizumab group; discontinuations because of adverse events occurred more frequently with lutikizumab (4/64) versus placebo (1/67). CONCLUSION: Despite adequate blockade of IL-1, lutikizumab did not improve pain or imaging outcomes in erosive HOA compared with placebo.


Subject(s)
Arthralgia/drug therapy , Immunoglobulins/therapeutic use , Interleukin-1alpha/immunology , Interleukin-1beta/immunology , Osteoarthritis/drug therapy , Adult , Aged , Aged, 80 and over , Arthralgia/diagnostic imaging , Arthralgia/immunology , C-Reactive Protein/analysis , Double-Blind Method , Female , Hand Joints/diagnostic imaging , Hand Joints/drug effects , Humans , Immunoglobulins/immunology , Male , Middle Aged , Neutrophils/metabolism , Osteoarthritis/diagnostic imaging , Osteoarthritis/immunology , Pain Measurement , Treatment Outcome
3.
Indian J Urol ; 33(4): 304-309, 2017.
Article in English | MEDLINE | ID: mdl-29021655

ABSTRACT

INTRODUCTION: We aimed to evaluate the surgical feasibility, complication, and oncological outcome of robot-assisted retroperitoneal lymph node dissection (RA-RPLND) in patients of testicular tumor with postchemotherapy residual retroperitoneal mass. METHODS: A total of 13 patients underwent RA-RPLND between January 2012 and September 2016 at our institute. A study was started on December 2015, so data were collected retrospectively and prospectively regarding patient demography, tumor characteristics, surgical, pathological outcome, and oncological outcome. RESULTS: RA-RPLND was successfully completed in all the 13 patients. Lateral approach was used in initial 12 patients with unilateral dissection in 11 patients and bilateral dissection after in 1 patient after repositioning in bilateral position. Supine robotic approach used in 1 patient. Median operative time was 200 min, median estimated blood loss was 120 ml, and median length of hospital stay was 4 days. The median yield of lymph node was 20. Three patients had positive lymph nodes, all had teratoma germ cell tumor. Ten patients had only necrosis in lymph nodes. After median follow-up 23 months (range 3-58 months), no systemic or retroperitoneal recurrence was found. Four patients developed chyle leak. One patient was managed conservatively with diet modification, one with intranodal lipiodol lymphangiography and two patients were managed surgically. CONCLUSION: RA-RPLND is safe and feasible for postchemotherapy residual mass with accepted compilation rate, but larger studies are required to establish its diagnostic and therapeutic utility along with safety of the procedure.

4.
J Am Chem Soc ; 135(13): 4930-3, 2013 Apr 03.
Article in English | MEDLINE | ID: mdl-23496043

ABSTRACT

A large-molecular-weight polyanion is found to possess lubricating properties for cartilage. The polyanion, sodium poly(7-oxanorbornene-2-carboxylate), is synthesized by ring-opening metathesis polymerization of methyl 5-oxanorbornene-2-carboxylate. When dissolved in aqueous solution and applied to the surface of human cartilage it reduces the friction at the interface and acts as a lubricant. Its performance is similar to that of synovial fluid and superior to those of saline and Synvisc in an ex vivo human cartilage plug-on-plug model. The polymer is also not readily degraded by hyaluronidase or cytotoxic to human chondrocytes in vitro. As such, this polymer is a new type of viscosupplement, and the results provide insight into the design requirements for synthesizing highly efficacious synthetic biolubricants.


Subject(s)
Cartilage, Articular/chemistry , Furans/chemical synthesis , Lubricants/chemical synthesis , Polyenes/chemical synthesis , Polymers/chemistry , Furans/chemistry , Humans , Lubricants/chemistry , Molecular Weight , Polyelectrolytes , Polyenes/chemistry , Polymerization , Rheology
5.
Radiology ; 266(1): 141-50, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23192774

ABSTRACT

PURPOSE: To quantify the affinity of a cationic computed tomography (CT) contrast agent (CA(4+)) and that of an anionic contrast agent (ioxaglate) to glycosaminoglycans (GAGs) in ex vivo cartilage tissue explants and to characterize the in vivo diffusion kinetics of CA(4+) and ioxaglate in a rabbit model. MATERIALS AND METHODS: All in vivo procedures were approved by the institutional animal care and use committee. The affinities of ioxaglate and CA(4+) to GAGs in cartilage (six bovine osteochondral plugs) were quantified by means of a modified binding assay using micro-CT after plug equilibration in serial dilutions of each agent. The contrast agents were administered intraarticularly to the knee joints of five New Zealand white rabbits to determine the in vivo diffusion kinetics and cartilage tissue imaging capabilities. Kinetics of diffusion into the femoral groove cartilage and relative contrast agent uptake into bovine plugs were characterized by means of nonlinear mixed-effects models. Diffusion time constants (τ) were compared by using a Student t test. RESULTS: The uptake of CA(4+) in cartilage was consistently over 100% of the reservoir concentration, whereas it was only 59% for ioxaglate. In vivo, the contrast material-enhanced cartilage reached a steady CT attenuation for both CA(4+) and ioxaglate, with τ values of 13.8 and 6.5 minutes, respectively (P = .04). The cartilage was easily distinguishable from the surrounding tissues for CA(4+) (12 mg of iodine per milliliter); comparatively, the anionic contrast agent provided less favorable imaging results, even when a higher concentration was used (80 mg of iodine per milliliter). CONCLUSION: The affinity of the cationic contrast agent CA(4+) to GAGs enables high-quality imaging and segmentation of ex vivo bovine and rabbit cartilage, as well as in vivo rabbit cartilage. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12112246/-/DC1.


Subject(s)
Cartilage, Articular/diagnostic imaging , Cartilage, Articular/metabolism , Glycosaminoglycans/metabolism , Ioxaglic Acid/pharmacokinetics , Tomography, X-Ray Computed/methods , Animals , Cations , Cattle , Contrast Media , Metabolic Clearance Rate , Rabbits , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
6.
Arthritis Rheum ; 64(11): 3531-42, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22899318

ABSTRACT

OBJECTIVE: The mechanistic link between Janus kinase (JAK) signaling and structural damage to arthritic joints in rheumatoid arthritis (RA) is poorly understood. This study was undertaken to investigate how selective inhibition of JAK with tofacitinib (CP-690,550) affects osteoclast-mediated bone resorption in a rat adjuvant-induced arthritis (AIA) model, as well as human T lymphocyte RANKL production and human osteoclast differentiation and function. METHODS: Hind paw edema, inflammatory cell infiltration, and osteoclast-mediated bone resorption in rat AIA were assessed using plethysmography, histopathologic analysis, and immunohistochemistry; plasma and hind paw tissue levels of cytokines and chemokines (including RANKL) were also assessed. In vitro RANKL production by activated human T lymphocytes was evaluated by immunoassay, while human osteoclast differentiation and function were assessed via quantitative tartrate-resistant acid phosphatase staining and degradation of human bone collagen, respectively. RESULTS: Edema, inflammation, and osteoclast-mediated bone resorption in rats with AIA were dramatically reduced after 7 days of treatment with the JAK inhibitor, which correlated with reduced numbers of CD68/ED-1+, CD3+, and RANKL+ cells in the paws; interleukin-6 (transcript and protein) levels were rapidly reduced in paw tissue within 4 hours of the first dose, whereas it took 4-7 days of therapy for RANKL levels to decrease. Tofacitinib did not impact human osteoclast differentiation or function, but did decrease human T lymphocyte RANKL production in a concentration-dependent manner. CONCLUSION: These results suggest that the JAK inhibitor tofacitinib suppresses osteoclast-mediated structural damage to arthritic joints, and this effect is secondary to decreased RANKL production.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Janus Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , RANK Ligand/metabolism , Animals , Arthritis, Experimental/immunology , Bone Resorption/drug therapy , Bone Resorption/immunology , Bone Resorption/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Disease Models, Animal , Female , Humans , Janus Kinases/metabolism , Macrophages/cytology , Macrophages/drug effects , Monocytes/cytology , Monocytes/drug effects , Osteoclasts/cytology , Osteoclasts/drug effects , Osteoclasts/enzymology , Piperidines , Rats , Rats, Inbred Lew , Signal Transduction/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/enzymology
7.
Indian J Urol ; 29(3): 263-4, 2013 Jul.
Article in English | MEDLINE | ID: mdl-24082453

ABSTRACT

Ureteric stones are usually small and symptomatic. We present a case of a 35-year old female who presented with minimally symptomatic right distal ureteric calculus with proximal hydroureteronephrosis. Laparoscopic right ureterolithotomy was performed and a giant ureteric calculus measuring 11 cm Χ 1.5 cm, weighing 40 g was retrieved.

9.
J Am Chem Soc ; 131(37): 13234-5, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19754183

ABSTRACT

The synthesis and evaluation of a new class of cationic iodinated contrast agents for the imaging of cartilage using computed tomography (CT) are described. In direct comparisons with anionic contrast agents, the cationic contrast agents afforded higher equilibrium concentrations in the articular cartilage of ex vivo rabbit femurs and thus greater imaging sensitivity. Variations in CT intensity across the sample reflected the inhomogeneous distribution of glycosaminoglycans in the tissue as confirmed by histological analysis. We anticipate that this work represents the first step in the development of sensitive, nondestructive CT-based methods to characterize the biochemical properties of cartilage using cationic contrast agents.


Subject(s)
Cartilage, Articular/diagnostic imaging , Contrast Media/chemistry , Static Electricity , Animals , Cartilage, Articular/metabolism , Contrast Media/chemical synthesis , Femur/diagnostic imaging , Femur/metabolism , Glycosaminoglycans/metabolism , Humans , Image Processing, Computer-Assisted , Iodine/chemistry , Rabbits , Tomography, X-Ray Computed
10.
Biomacromolecules ; 9(10): 2863-72, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18800810

ABSTRACT

First generation, photocrosslinkable dendrimers consisting of natural metabolites (i.e., succinic acid, glycerol, and beta-alanine) and nonimmunogenic poly(ethylene glycol) (PEG) were synthesized divergently in high yields using ester and carbamate forming reactions. Aqueous solutions of these dendrimers were photocrosslinked with an eosin-based photoinitiator to afford hydrogels. The hydrogels displayed a range of mechanical properties based on their structure, generation size, and concentration in solution. All of the hydrogels showed minimal swelling characteristics. The dendrimer solutions were then photocrosslinked in situ in an ex vivo rabbit osteochondral defect (3 mm diameter and 10 mm depth), and the resulting hydrogels were subjected to physiologically relevant dynamic loads. Magnetic resonance imaging (MRI) showed the hydrogels to be fixated in the defect site after the repetitive loading regimen. The ([G1]-PGLBA-MA) 2-PEG hydrogel was chosen for the 6 month pilot in vivo rabbit study because this hydrogel scaffold could be prepared at low polymer weight (10 wt %) and possessed the largest compressive modulus of the 10% formulations, a low swelling ratio, and contained carbamate linkages, which are more hydrolytically stable than the ester linkages. The hydrogel-treated osteochondral defects showed good attachment in the defect site and histological analysis showed the presence of collagen II and glycosaminoglycans (GAGs) in the treated defects. By contrast, the contralateral unfilled defects showed poor healing and negligible GAG or collagen II production. Good mechanical properties, low swelling, good attachment to the defect site, and positive in vivo results illustrate the potential of these dendrimer-based hydrogels as scaffolds for osteochondral defect repair.


Subject(s)
Carbamates/chemistry , Cross-Linking Reagents/chemistry , Dendrimers/chemistry , Hydrogels/chemistry , Osteochondritis/therapy , Animals , Femur/metabolism , Light , Macromolecular Substances , Male , Materials Testing , Molecular Conformation , Polyethylene Glycols/chemistry , Rabbits , Wound Healing
11.
Biomaterials ; 182: 13-20, 2018 11.
Article in English | MEDLINE | ID: mdl-30099277

ABSTRACT

Intra-articular injection of hyaluronic acid (HA) is used to treat osteoarthritis (OA) as a viscosupplement, yet it only provides short-term benefit because HA is cleaved by hyaluronidase and cleared out of the joint after several days. Therefore, we developed a new polymer biolubricant based on poly-oxanorbornane carboxylate to enhance joint lubrication for a prolonged time. Rheological and biotribological studies of the biolubricant reveal viscoelastic properties and coefficient of friction equivalent and superior to that of healthy synovial fluid, respectively. Furthermore, in an ex vivo bovine cartilage plug model, the biolubricant exhibits superior long-term reduction of friction and wear prevention compared to saline and healthy synovial fluid. ISO 10993 biocompatibility tests demonstrate that the biolubricant polymer is non-toxic. In an in vivo rat medial meniscal tear OA model, where the performance of the leading HA viscosupplement (Synvisc-one®) is comparable to the saline control, treatment with the biolubricant affords significant chondroprotection compared to the saline control.


Subject(s)
Chondrocytes/drug effects , Furans/administration & dosage , Knee Joint/drug effects , Meniscus/drug effects , Polyenes/administration & dosage , Synovial Fluid/drug effects , Viscosupplements/administration & dosage , Animals , Biomechanical Phenomena , Cell Line , Chondrocytes/cytology , Chondrocytes/metabolism , Furans/pharmacology , Furans/therapeutic use , Humans , Injections, Intra-Articular , Knee Injuries/drug therapy , Knee Injuries/metabolism , Knee Joint/metabolism , Male , Meniscus/injuries , Meniscus/metabolism , Mice , NIH 3T3 Cells , Osteoarthritis/drug therapy , Polyenes/pharmacology , Polyenes/therapeutic use , Rats, Inbred Lew , Synovial Fluid/metabolism , Viscosupplements/pharmacology , Viscosupplements/therapeutic use
12.
Skelet Muscle ; 7(1): 25, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29121992

ABSTRACT

BACKGROUND: The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-ß (TGF-ß) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients' functional decline. METHODS: A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-ß ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody's effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. RESULTS: Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. CONCLUSIONS: We demonstrated that the potent anti-myostatin antibody mRK35 and its clinical analog, domagrozumab, were able to induce muscle anabolic activity in both rodents, including the mdx mouse model of DMD, and non-human primates. A Phase 2, potentially registrational, clinical study with domagrozumab in DMD patients is currently underway.


Subject(s)
Antibodies/administration & dosage , Muscle Contraction , Muscle Strength , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Muscular Dystrophy, Duchenne/drug therapy , Myostatin/immunology , Animals , CHO Cells , Cricetulus , Disease Models, Animal , Humans , Macaca fascicularis , Male , Mice, Inbred C57BL , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/immunology , Muscular Dystrophy, Duchenne/physiopathology , Myostatin/antagonists & inhibitors , Signal Transduction/drug effects
13.
J Orthop Res ; 32(10): 1333-40, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24961833

ABSTRACT

To determine if mechanical convection accelerates partitioning of an anionic contrast agent into cartilage while maintaining its ability to reflect the glycosaminoglycan (GAG) content in contrast-enhanced computed tomography (CECT) of cartilage. Bovine patellae (N = 4) were immersed in iothalamate and serially imaged over 24 h of passive diffusion at 34°C. Following saline washing for 14 h, each patella was serially imaged over 2.5 h of mechanical convection by cyclic compressive loading (120N, 1 Hz) while immersed in iothalamate at 34°C. After similar saline washing, each patella was sectioned into 15 blocks (n = 60) and contrast concentration per time point as well as GAG content were determined for each cartilage block. Mechanical convection produced 70.6%, 34.4%, and 16.4% higher contrast concentration at 30, 60, and 90 min, respectively, compared to passive diffusion (p < 0.001) and boosted initial contrast flux 330%. The correlation between contrast concentration and GAG content was significant at all time points and correlation coefficients improved with time, reaching R(2) = 0.60 after 180 min of passive diffusion and 22.5 min of mechanical convection. Mechanical convection significantly accelerated partitioning of a contrast agent into healthy cartilage while maintaining strong correlations with GAG content, providing an evidence-based rationale for adopting walking regimens in CECT imaging protocols.


Subject(s)
Cartilage, Articular/diagnostic imaging , Contrast Media , Glycosaminoglycans/analysis , Iothalamic Acid , Patella/diagnostic imaging , Animals , Cartilage, Articular/chemistry , Cartilage, Articular/physiology , Cattle , Diffusion , Movement , Patella/physiology , Tomography, X-Ray Computed
14.
J Orthop Res ; 29(5): 704-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21437949

ABSTRACT

Minimally invasive and non-destructive methods to quantify glycosaminoglycans (GAGs) in articular cartilage extracellular matrix are of significant interest for the biochemical analysis of cartilage and diagnosis and tracking of osteoarthritis in vivo. Here, we report the use of cationic iodinated contrast agents in comparison to conventional anionic contrast agents for the quantitative monitoring of GAG concentrations with peripheral quantitative computed tomography. Using an ex vivo bovine osteochondral plug model, the cationic contrast agents were evaluated for their ability to distribute into articular cartilage and generate a positive relationship with GAG content. The cationic agents resulted in much higher equilibrium X-ray attenuations in cartilage extracellular matrix (ECM) than anionic agents. Experiments with samples subjected to enzymatic GAG degradation demonstrated that the cationic agents were up to five times more sensitive (p = 0.0001) to changes in GAG content and had a 24% higher correlation (p = 0.002) compared to the anionic agent (R(2) = 0.86, p < 0.0001 compared with R(2) = 0.62, p = 0.004). The natural inhomogeneous distribution of GAGs in the ECM could clearly be identified in undegraded samples.


Subject(s)
Benzamides , Cartilage, Articular/chemistry , Extracellular Matrix/chemistry , Glycosaminoglycans/analysis , Triiodobenzoic Acids , Animals , Cartilage, Articular/diagnostic imaging , Cations , Cattle , Contrast Media , Rabbits , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL