ABSTRACT
Peritoneal metastasis of colorectal origin appears in ~10-15% of patients at the time of diagnosis and in 30-40% of cases with disease progression. Locoregional spread through the peritoneum is considered stage IVc and is associated with a poor prognosis. The development of a regional therapeutic strategy based on cytoreductive surgery, and hyperthermic intra-abdominal chemotherapy has significantly altered the course of the disease. Although recent evidence supports the benefits of cytoreductive surgery, the benefits of hyperthermic intra-abdominal chemotherapy are, however, still a matter of debate. Understanding the molecular alterations underlying the disease is crucial for developing new therapeutic strategies. Here, we evaluated the involvement in peritoneal dissemination of the oncogenic isoform of TP73, ΔNp73, and its effector targets in in vitro and mouse models, and in 30 patients diagnosed with colorectal peritoneal metastasis. In an orthotopic mouse model, we observed that tumor cells overexpressing ΔNp73 present a higher avidity for the peritoneum and that extracellular vesicles secreted by ΔNp73-upregulating tumor cells enhance their dissemination. In addition, we identified that tumor cells overexpressing ΔNp73 present with dysregulation of genes associated with an epithelial/mesothelial-to-mesenchymal transition (MMT) and that mesothelial cells exposed to the conditioned medium of tumor cells with upregulated ΔNp73 present a mesenchymal phenotype. Lastly, ΔNp73 and its effector target RNAs were dysregulated in our patient series, there were positive correlations between ΔNp73 and its effector targets, and MSN and ITGB4 (ΔNp73 effectors) predicted patient survival. In conclusion, ΔNp73 and its effector targets are involved in the peritoneal dissemination of colorectal cancer and predict patient survival. The promotion of the EMT/MMT and modulation of the adhesion capacity in colorectal cancer cells might be the mechanisms triggered by ΔNp73. Remarkably, ΔNp73 protein is a druggable protein and should be the focus of future studies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Subject(s)
Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Peritoneal Neoplasms , Tumor Protein p73 , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Peritoneal Neoplasms/secondary , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Peritoneal Neoplasms/pathology , Animals , Male , Female , Tumor Protein p73/metabolism , Tumor Protein p73/genetics , Middle Aged , Aged , Mice , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, TumorABSTRACT
A deeper understanding of colorectal cancer (CRC) biology would help to identify specific early diagnostic markers. Here, we conducted quantitative proteomics on FFPE healthy, adenoma, and adenocarcinoma tissue samples from six stage I sporadic CRC patients to identify dysregulated proteins during early CRC development. Two independent quantitative 10-plex TMT experiments were separately performed. After protein extraction, trypsin digestion, and labeling, proteins were identified and quantified by using a Q Exactive mass spectrometer. A total of 2681 proteins were identified and quantified after data analysis and bioinformatics with MaxQuant and the R program. Among them, 284 and 280 proteins showed significant upregulation and downregulation (expression ratio ≥1.5 or ≤0.67, p-value ≤0.05), respectively, in adenoma and/or adenocarcinoma compared to healthy tissue. Ten dysregulated proteins were selected to study their role in CRC by WB, IHC, TMA, and ELISA using tissue and plasma samples from CRC patients, individuals with premalignant colorectal lesions (adenomas), and healthy individuals. In vitro loss-of-function cell-based assays and in vivo experiments using three CRC cell lines with different metastatic properties assessed the important roles of SLC8A1 and TXNDC17 in CRC and liver metastasis. Additionally, SLC8A1 and TXNDC17 protein levels in plasma possessed the diagnostic ability of early CRC stages.
Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms , Paraffin Embedding , Proteomics , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Proteomics/methods , Biomarkers, Tumor/metabolism , Male , Female , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenoma/pathology , Adenoma/metabolism , Cell Line, Tumor , Middle Aged , Gene Expression Regulation, Neoplastic , Aged , AnimalsABSTRACT
Micromotor (MM) technology offers a valuable and smart on-the-move biosensing microscale approach in clinical settings where sample availability is scarce in the case of Alzheimer's disease (AD). Soluble amyloid-ß protein oligomers (AßO) (mainly AßO42) that circulate in biological fluids have been recognized as a molecular biomarker and therapeutic target of AD due to their high toxicity, and they are correlated much more strongly with AD compared to the insoluble Aß monomers. A graphene oxide (GO)-gold nanoparticles (AuNPs)/nickel (Ni)/platinum nanoparticles (PtNPs) micromotors (MMGO-AuNPs)-based electrochemical label-free aptassay is proposed for sensitive, accurate, and rapid determination of AßO42 in complex clinical samples such as brain tissue, cerebrospinal fluid (CSF), and plasma from AD patients. An approach that implies the in situ formation of AuNPs on the GO external layer of tubular MM in only one step during MM electrosynthesis was performed (MMGO-AuNPs). The AßO42 specific thiolated-aptamer (AptAßO42) was immobilized in the MMGO-AuNPs via Au-S interaction, allowing for the selective recognition of the AßO42 (MMGO-AuNPs-AptAßO42-AßO42). AuNPs were smartly used not only to covalently bind a specific thiolated-aptamer for the design of a label-free electrochemical aptassay but also to improve the final MM propulsion performance due to their catalytic activity (approximately 2.0× speed). This on-the-move bioplatform provided a fast (5 min), selective, precise (RSD < 8%), and accurate quantification of AßO42 (recoveries 94-102%) with excellent sensitivity (LOD = 0.10 pg mL-1) and wide linear range (0.5-500 pg mL-1) in ultralow volumes of the clinical sample of AD patients (5 µL), without any dilution. Remarkably, our MM-based bioplatform demonstrated the competitiveness for the determination of AßO42 in the target samples against the dot blot analysis, which requires more than 14 h to provide qualitative results only. It is also important to highlight its applicability to the potential analysis of liquid biopsies as plasma and CSF samples, improving the reliability of the diagnosis given the heterogeneity and temporal complexity of neurodegenerative diseases. The excellent results obtained demonstrate the analytical potency of our approach as a future tool for clinical/POCT (Point-of-care testing) routine scenarios.
Subject(s)
Alzheimer Disease , Biosensing Techniques , Graphite , Metal Nanoparticles , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Gold/chemistry , Amyloid beta-Peptides/analysis , Metal Nanoparticles/chemistry , Reproducibility of Results , Limit of Detection , Platinum , Amyloidogenic Proteins , Biosensing Techniques/methods , Electrochemical Techniques/methodsABSTRACT
This work reports the first electrochemical bioplatforms developed for the determination of the total contents of either target miRNA or methylated target miRNA. The bioplatforms are based on the hybridization of the target miRNA with a synthetic biotinylated DNA probe, the capture of the formed DNA/miRNA heterohybrids on the surface of magnetic microcarriers, and their recognition with an antibody selective to these heterohybrids or to the N6-methyladenosine (m6A) epimark. The determination of the total or methylated target miRNA was accomplished by labeling such secondary antibodies with the horseradish peroxidase (HRP) enzyme. In both cases, amperometric transduction was performed on the surface of disposable electrodes after capturing the resulting HRP-tagged magnetic bioconjugates. Because of their increasing relevance in colorectal cancer (CRC) diagnosis and prognosis, miRNA let-7a and m6A methylation were selected. The proposed electrochemical bioplatforms showed attractive analytical and operational characteristics for the determination of the total and m6A-methylated target miRNA in less than 75 min. These bioplatforms, innovative in design and application, were applied to the analysis of total RNA samples extracted from cultured cancer cells with different metastatic profiles and from paired healthy and tumor tissues of patients diagnosed with CRC at different stages. The obtained results demonstrated, for the first time using electrochemical platforms, the potential of interrogating the target miRNA methylation level to discriminate the metastatic capacities of cancer cells and to identify tumor tissues and, in a pioneering way, the potential of the m6A methylation in miRNA let-7a to serve as a prognostic biomarker for CRC.
Subject(s)
Biosensing Techniques , Colorectal Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/analysis , Epigenome , Nucleic Acid Hybridization/methods , Antibodies/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Prognosis , Biosensing Techniques/methodsABSTRACT
Electrochemical biosensing continues to advance tirelessly, overcoming barriers that have kept it from leaving research laboratories for many years. Among them, its compromised performance in complex biological matrices due to fouling or receptor stability issues, the limitations in determining toxic and small analytes, and its use, conditioned to the commercial availability of commercial receptors and the exploration of natural molecular interactions, deserved to be highlighted. To address these challenges, in addition to the intrinsic properties of electrochemical biosensing, its coupling with biomimetic materials has played a fundamental role, among which bioinspired phage and peptide probes stand out. The versatility in design and employment of these probes has opened an unimaginable plethora of possibilities for electrochemical biosensing, improving their performance far beyond the development of highly sensitive and selective devices. The state of the art offers robust electroanalytical biotools, capable of operating in complex samples and with exciting opportunities to discover and determine targets regardless of their toxicity and size, the commercial availability of bioreceptors, and prior knowledge of molecular interactions. With all this in mind, this review offers a panoramic, novel, and updated vision of both the tremendous advances and opportunities offered by the combination of electrochemical biosensors with bioinspired phage and peptide probes and the challenges and research efforts that are envisioned in the immediate future.
ABSTRACT
In the era that we seek personalization in material things, it is becoming increasingly clear that the individualized management of medicine and nutrition plays a key role in life expectancy and quality of life, allowing participation to some extent in our welfare and the use of societal resources in a rationale and equitable way. The implementation of precision medicine and nutrition are highly complex challenges which depend on the development of new technologies able to meet important requirements in terms of cost, simplicity, and versatility, and to determine both individually and simultaneously, almost in real time and with the required sensitivity and reliability, molecular markers of different omics levels in biofluids extracted, secreted (either naturally or stimulated), or circulating in the body. Relying on representative and pioneering examples, this review article critically discusses recent advances driving the position of electrochemical bioplatforms as one of the winning horses for the implementation of suitable tools for advanced diagnostics, therapy, and precision nutrition. In addition to a critical overview of the state of the art, including groundbreaking applications and challenges ahead, the article concludes with a personal vision of the imminent roadmap.
Subject(s)
Precision Medicine , Quality of Life , Animals , Horses , Reproducibility of Results , BiomarkersABSTRACT
BACKGROUND: Alzheimer's disease (AD) is a progressive, chronic, and neurodegenerative disease, and the most common cause of dementia worldwide. Currently, the mechanisms underlying the disease are far from being elucidated. Thus, the study of proteins involved in its pathogenesis would allow getting further insights into the disease and identifying new markers for AD diagnosis. METHODS: We aimed here to analyze protein dysregulation in AD brain by quantitative proteomics to identify novel proteins associated with the disease. 10-plex TMT (tandem mass tags)-based quantitative proteomics experiments were performed using frozen tissue samples from the left prefrontal cortex of AD patients and healthy individuals and vascular dementia (VD) and frontotemporal dementia (FTD) patients as controls (CT). LC-MS/MS analyses were performed using a Q Exactive mass spectrometer. RESULTS: In total, 3281 proteins were identified and quantified using MaxQuant. Among them, after statistical analysis with Perseus (p value < 0.05), 16 and 155 proteins were defined as upregulated and downregulated, respectively, in AD compared to CT (Healthy, FTD and VD) with an expression ratio ≥ 1.5 (upregulated) or ≤ 0.67 (downregulated). After bioinformatics analysis, ten dysregulated proteins were selected as more prone to be associated with AD, and their dysregulation in the disease was verified by qPCR, WB, immunohistochemistry (IHC), immunofluorescence (IF), pull-down, and/or ELISA, using tissue and plasma samples of AD patients, patients with other dementias, and healthy individuals. CONCLUSIONS: We identified and validated novel AD-associated proteins in brain tissue that should be of further interest for the study of the disease. Remarkably, PMP2 and SCRN3 were found to bind to amyloid-ß (Aß) fibers in vitro, and PMP2 to associate with Aß plaques by IF, whereas HECTD1 and SLC12A5 were identified as new potential blood-based biomarkers of the disease.
Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , Frontotemporal Dementia/genetics , Proteomics , Chromatography, Liquid , Tandem Mass Spectrometry , Amyloid beta-Peptides/metabolism , Prefrontal Cortex/metabolism , Biomarkers , tau Proteins/metabolismABSTRACT
A trendsetting direct competitive-based biosensing tool has been developed and implemented for the determination of the polyunsaturated fatty acid arachidonic acid (ARA), a highly significant biological regulator with decisive roles in viral infections. The designed methodology involves a competitive reaction between the target endogenous ARA and a biotin-ARA competitor for the recognition sites of anti-ARA antibodies covalently attached to the surface of carboxylic acid-coated magnetic microbeads (HOOC-MµBs), followed by the enzymatic label of the biotin-ARA residues with streptavidin-horseradish peroxidase (Strep-HRP) conjugate. The resulting bioconjugates were magnetically trapped onto the sensing surface of disposable screen-printed carbon transducers (SPCEs) to monitor the extent of the biorecognition reaction through amperometry. The operational functioning of the exhaustively optimized and characterized immunosensing bioplatform was highly convenient for the quantitative determination of ARA in serum samples from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-) and respiratory syncytial virus (RSV)-infected individuals in a rapid, affordable, trustful, and sensitive manner.
Subject(s)
Arachidonic Acid , Biosensing Techniques , COVID-19 , SARS-CoV-2 , Humans , Arachidonic Acid/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , Biosensing Techniques/methods , SARS-CoV-2/immunology , Horseradish Peroxidase/chemistry , Respiratory Syncytial Viruses/immunology , Immunoassay/methods , Streptavidin/chemistry , Biotin/chemistry , Limit of DetectionABSTRACT
Cataracts and glaucoma account for a high percentage of vision loss and blindness worldwide. Small extracellular vesicles (sEVs) are released into different body fluids, including the eye's aqueous humor. Information about their proteome content and characterization in ocular pathologies is not yet well established. In this study, aqueous humor sEVs from healthy individuals, cataracts, and glaucoma patients were studied, and their specific protein profiles were characterized. Moreover, the potential of identified proteins as diagnostic glaucoma biomarkers was evaluated. The protein content of sEVs from patients' aqueous humor with cataracts and glaucoma compared to healthy individuals was analyzed by quantitative proteomics. Validation was performed by western blot (WB) and ELISA. A total of 828 peptides and 192 proteins were identified and quantified. After data analysis with the R program, 8 significantly dysregulated proteins from aqueous humor sEVs in cataracts and 16 in glaucoma showed an expression ratio ≥ 1.5. By WB and ELISA using directly aqueous humor samples, the dysregulation of 9 proteins was mostly confirmed. Importantly, GAS6 and SPP1 showed high diagnostic ability of glaucoma, which in combination allowed for discriminating glaucoma patients from control individuals with an area under the curve of 76.1% and a sensitivity of 65.6% and a specificity of 87.7%.
Subject(s)
Aqueous Humor , Biomarkers , Cataract , Extracellular Vesicles , Glaucoma , Intercellular Signaling Peptides and Proteins , Osteopontin , Proteomics , Humans , Aqueous Humor/metabolism , Aqueous Humor/chemistry , Glaucoma/metabolism , Glaucoma/diagnosis , Extracellular Vesicles/metabolism , Biomarkers/metabolism , Proteomics/methods , Female , Male , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/analysis , Aged , Osteopontin/metabolism , Middle Aged , Cataract/metabolism , Cataract/diagnosis , Proteome/analysis , Proteome/metabolism , Enzyme-Linked Immunosorbent AssayABSTRACT
BACKGROUND: Multiple sclerosis (MS) is an immune-mediated central nervous system disease whose course is unpredictable. Finding biomarkers that help to better comprehend the disease's pathogenesis is crucial for supporting clinical decision-making. Blood extracellular vesicles (EVs) are membrane-bound particles secreted by all cell types that contain information on the disease's pathological processes. PURPOSE: To identify the immune and nervous system-derived EV profile from blood that could have a specific role as biomarker in MS and assess its possible correlation with disease state. RESULTS: Higher levels of T cell-derived EVs and smaller size of neuron-derived EVs were associated with clinical relapse. The smaller size of the oligodendrocyte-derived EVs was related with motor and cognitive impairment. The proteomic analysis identified mannose-binding lectin serine protease 1 and complement factor H from immune system cell-derived EVs as autoimmune disease-associated proteins. We observed hepatocyte growth factor-like protein in EVs from T cells and inter-alpha-trypsin inhibitor heavy chain 2 from neurons as white matter injury-related proteins. In patients with MS, a specific protein profile was found in the EVs, higher levels of alpha-1-microglobulin and fibrinogen ß chain, lower levels of C1S and gelsolin in the immune system-released vesicles, and Talin-1 overexpression in oligodendrocyte EVs. These specific MS-associated proteins, as well as myelin basic protein in oligodendrocyte EVs, correlated with disease activity in the patients with MS. CONCLUSION: Neural-derived and immune-derived EVs found in blood appear to be good specific biomarkers in MS for reflecting the disease state.
Subject(s)
Extracellular Vesicles , Multiple Sclerosis , Humans , Multiple Sclerosis/metabolism , Proteomics , Brain/pathology , Extracellular Vesicles/metabolism , Immune System , Extracellular Matrix , BiomarkersABSTRACT
The glycosylation status of proteins is increasingly used as biomarker to improve the reliability in the diagnosis and prognosis of diseases as relevant as cancer. This feeds the need for tools that allow its simple and reliable analysis and are compatible with applicability in the clinic. With this objective in mind, this work reports the first bioelectronic immunoplatforms described to date for the determination of glycosylated haptoglobin (Hp) and the simultaneous determination of total and glycosylated Hp. The bioelectronic immunoplatform is based on the implementation of non-competitive bioassays using two different antibodies or an antibody and a lectin on the surface of commercial magnetic microcarriers. The resulting bioconjugates are labeled with the horseradish peroxidase (HRP) enzyme, and after their magnetic capture on disposable electroplatforms, the amperometric transduction using the H2O2/hydroquinone (HQ) system allows the single or multiple detection. The developed immunoplatform achieves limits of detection (LODs) of 0.07 and 0.46 ng mL-1 for total and glycosylated Hp in buffer solution, respectively. The immunoplatform allows accurate determination using simple and relatively short protocols (approx. 75 min) of total and glycosylated Hp in the secretomes of in vitro-cultured colorectal cancer (CRC) cells with different metastatic potentials, which is not feasible, due to lack of sensitivity, by means of some commercial ELISA kits and Western blot methodology.
Subject(s)
Biosensing Techniques , Neoplasms , Humans , Haptoglobins , Hydrogen Peroxide , Reproducibility of Results , Enzyme-Linked Immunosorbent Assay , Antibodies , Biosensing Techniques/methodsABSTRACT
BACKGROUND: Liver metastasis is the primary cause of colorectal cancer (CRC)-associated death. Aryl-hydrocarbon receptor-interacting protein (AIP), a putative positive intermediary in aryl-hydrocarbon receptor-mediated signalling, is overexpressed in highly metastatic human KM12SM CRC cells and other highly metastatic CRC cells. METHODS: Meta-analysis and immunohistochemistry were used to assess the relevance of AIP. Cellular functions and signalling mechanisms mediated by AIP were assessed by gain-of-function experiments and in vitro and in vivo experiments. RESULTS: A significant association of high AIP expression with poor CRC patients' survival was observed. Gain-of-function and quantitative proteomics experiments demonstrated that AIP increased tumorigenic and metastatic properties of isogenic KM12C (poorly metastatic) and KM12SM (highly metastatic to the liver) CRC cells. AIP overexpression dysregulated epithelial-to-mesenchymal (EMT) markers and induced several transcription factors and Cadherin-17 activation. The former induced the signalling activation of AKT, SRC and JNK kinases to increase adhesion, migration and invasion of CRC cells. In vivo, AIP expressing KM12 cells induced tumour growth and liver metastasis. Furthermore, KM12C (poorly metastatic) cells ectopically expressing AIP became metastatic to the liver. CONCLUSIONS: Our data reveal new roles for AIP in regulating proteins associated with cancer and metastasis to induce tumorigenic and metastatic properties in colon cancer cells driving liver metastasis.
Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Liver Neoplasms , Rectal Neoplasms , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Hydrocarbons , Immunohistochemistry , Liver Neoplasms/secondary , Neoplasm MetastasisABSTRACT
Antibodies are widely employed as biorecognition elements for the detection of a plethora of compounds including food and environmental contaminants, biomarkers, or illicit drugs. They are also applied in therapeutics for the treatment of several disorders. Recent recommendations from the EU on animal protection and the replacement of animal-derived antibodies by non-animal-derived ones have raised a great controversy in the scientific community. The application of recombinant antibodies is expected to achieve a high growth rate in the years to come thanks to their versatility and beneficial characteristics in comparison to monoclonal and polyclonal antibodies, such as stability in harsh conditions, small size, relatively low production costs, and batch-to-batch reproducibility. This review describes the characteristics, advantages, and disadvantages of recombinant antibodies including antigen-binding fragments (Fab), single-chain fragment variable (scFv), and single-domain antibodies (VHH) and their application in food analysis with especial emphasis on the analysis of biotoxins, antibiotics, pesticides, and foodborne pathogens. Although the wide application of recombinant antibodies has been hampered by a number of challenges, this review demonstrates their potential for the sensitive, selective, and rapid detection of food contaminants.
Subject(s)
Antibodies , Food Analysis , Immunoassay/methods , Recombinant Proteins , Animals , Biosensing TechniquesABSTRACT
Metastasis is responsible for about 90% of cancer-associated deaths. In the context of solid tumors, the low oxygen concentration in the tumor microenvironment (hypoxia) is one of the key factors contributing to metastasis. Tumor cells adapt to these conditions by overexpressing certain proteins such as programmed death ligand 1 (PD-L1) and hypoxia-inducible factor 1 alpha (HIF-1α). However, the determination of these tumor hypoxia markers that can be used to follow-up tumor progression and improve the efficiency of therapies has been scarcely addressed using electrochemical biosensors. In this work, we report the first electrochemical bioplatform for the determination of PD-L1 as well as the first one allowing its simultaneous determination with HIF-1α. The target proteins were captured and enzymatically labeled on magnetic microbeads and amperometric detection was undertaken on the surface of screen-printed dual carbon electrodes using the hydrogen peroxide/peroxidase/hydroquinone system. Sandwich immunoassays were implemented for both the HIF-1α and PD-L1 sensors and the analytical characteristics were evaluated providing LOD values of 86 and 279 pg mL-1 for the amperometric determination of PD-L1 and HIF-1α standards, respectively. The developed electrochemical immunoplatforms are competitive versus the only electrochemical immunosensor reported for the determination of HIF-1α and the "gold standard" ELISA methodology for the single determination of both proteins in terms of assay time, compatibility with the simultaneous determination of both proteins making their use suitable for untrained users at the point of attention. The dual amperometric immunosensor was applied to the simultaneous determination of HIF-1α and PD-L1 in cancer cell lysates. The analyses lasted only 2 h and just 0.5 µg of the sample was required.
Subject(s)
Biomarkers, Tumor , Biosensing Techniques , Biomarkers, Tumor/analysis , Biosensing Techniques/methods , Humans , Hypoxia , Immunoassay , Tumor HypoxiaABSTRACT
A dual immunosensor is reported for the simultaneous determination of two important immunity-related cytokines: BAFF (B cell activation factor) and APRIL (a proliferation-induced signal). Sandwich-type immunoassays with specific antibodies (cAbs) and a strategy for signal amplification based on labelling the detection antibodies (dAbs) with binary MoS2/MWCNTs nanostructures and using horseradish peroxidase (HRP) were implemented. Amperometric detection was carried out at screen-printed dual carbon electrodes (SPdCEs) through the hydroquinone HQ/H2O2 system. The developed dual immunosensor provided limit of detection (LOD) of 0.08 and 0.06 ng mL-1 for BAFF and APRIL, respectively, and proved to be useful for the determination of both cytokines in cancer cell lysates and serum samples from patients diagnosed with autoimmune diseases and cancer. The obtained results agreed with those found using ELISA methodologies.
Subject(s)
Biosensing Techniques , Nanostructures , Antibodies , Biosensing Techniques/methods , Cell Proliferation , Cytokines , Electrochemical Techniques , Humans , Hydrogen Peroxide , Immunoassay/methods , MolybdenumABSTRACT
The development of versatile and sensitive biotools to quantify specific SARS-CoV-2 immunoglobulins in SARS-CoV-2 infected and non-infected individuals, built on the surface of magnetic microbeads functionalized with nucleocapsid (N) and in-house expressed recombinant spike (S) proteins is reported. Amperometric interrogation of captured N- and S-specific circulating total or individual immunoglobulin (Ig) isotypes (IgG, IgM, and IgA), subsequently labelled with HRP-conjugated secondary antibodies, was performed at disposable single or multiplexed (8×) screen-printed electrodes using the HQ/HRP/H2 O2 system. The obtained results using N and in-house expressed S ectodomains of five SARS-CoV-2 variants of concern (including the latest Delta and Omicron) allow identification of vulnerable populations from those with natural or acquired immunity, monitoring of infection, evaluation of vaccine efficiency, and even identification of the variant responsible for the infection.
Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Immunity , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, CoronavirusABSTRACT
New biomarkers of Alzheimer's disease (AD) with a diagnostic value in preclinical and prodromal stages are urgently needed. AD-related serum autoantibodies are potential candidate biomarkers. Here, we aimed at identifying AD-related serum autoantibodies using protein microarrays and mass spectrometry-based methods. To this end, an untargeted complementary screening using high-density (42,100 antigens) and low-density (384 antigens) planar protein-epitope signature tag (PrEST) arrays and an immunoprecipitation protocol coupled to mass spectrometry analysis were used for serum autoantibody profiling. From the untargeted screening phase, 377 antigens corresponding to 338 proteins were selected for validation. Out of them, IVD, CYFIP1, and ADD2 seroreactivity was validated using 128 sera from AD patients and controls by PrEST-suspension bead arrays, and ELISA or luminescence Halotag-based bead immunoassay using full-length recombinant proteins. Importantly, IVD, CYFIP1, and ADD2 showed in combination a noticeable AD diagnostic ability. Moreover, IVD protein abundance in the prefrontal cortex was significantly two-fold higher in AD patients than in controls by western blot and immunohistochemistry, whereas CYFIP1 and ADD2 were significantly down-regulated in AD patients. The panel of AD-related autoantigens identified by a comprehensive multiomics approach may provide new insights of the disease and should help in the blood-based diagnosis of Alzheimer's disease. Mass spectrometry raw data are available in the ProteomeXchange database with the access number PXD028392.
Subject(s)
Alzheimer Disease , Autoantibodies , Autoantigens , Biomarkers , Humans , Protein Array Analysis/methodsABSTRACT
Early diagnosis in primary care settings can increase access to therapies and their efficiency as well as reduce health care costs. In this context, we report in this paper the development of a disposable immunoplatform for the rapid and simultaneous determination of two protein biomarkers recently reported to be involved in the pathological process of neurodegenerative disorders (NDD), tau protein (tau), and TAR DNA-binding protein 43 (TDP-43). The methodology involves implementation of a sandwich-type immunoassay on the surface of dual screen-printed carbon electrodes (dSPCEs) electrochemically grafted with p-aminobenzoic acid (p-ABA), which allows the covalent immobilization of a gold nanoparticle-poly(amidoamine) (PAMAM) dendrimer nanocomposite (3D-Au-PAMAM). This scaffold was employed for the immobilization of the capture antibodies (CAbs). Detector antibodies labeled with horseradish peroxidase (HRP) and amperometric detection at - 0.20 V (vs. Ag pseudo-reference electrode) using the H2O2/hydroquinone (HQ) system were used. The developed methodology exhibits high sensitivity and selectivity for determining the target proteins, with detection limits of 2.3 and 12.8 pg mL-1 for tau and TDP-43, respectively. The simultaneous determination of tau and TDP-43 was accomplished in raw plasma samples and brain tissue extracts from healthy individuals and NDD-diagnosed patients. The analysis can be performed in just 1 h using a simple one-step assay protocol and small sample amounts (5 µL plasma and 2.5 µg brain tissue extracts). Graphical abstract.
Subject(s)
DNA-Binding Proteins/metabolism , Dendrimers/chemistry , Gold/chemistry , Immunoassay/methods , Metal Nanoparticles/chemistry , Neurodegenerative Diseases/diagnosis , Polyamines/chemistry , tau Proteins/metabolism , Biomarkers/blood , Biomarkers/metabolism , Brain/metabolism , Case-Control Studies , DNA-Binding Proteins/blood , Electrodes , Humans , Neurodegenerative Diseases/blood , Neurodegenerative Diseases/metabolism , tau Proteins/bloodABSTRACT
This work reports the first bioplatform able to determine electrochemically 5-hydroxymethylcytosine (5-hmC) methylation events at localized sites and single-base sensitivity. The described bioplatform relies on a specific antibody (anti-5-hmC), further conjugated with commercial bioreagents loaded with multiple horseradish peroxidase (HRP) molecules, recognizing the epimark in a target DNA, captured through hybridization onto streptavidin-magnetic microbeads (Strep-MBs) modified with a complementary DNA capture probe. The electrochemical detection is performed by amperometry (-0.20 V vs Ag pseudoreference electrode) at disposable screen-printed carbon electrodes (SPCEs) in the presence of H2O2/hydroquinone (HQ) upon magnetic capture of the modified MBs onto the SPCE. The use of the commercial bioreagents ProtA-polyHRP80 and Histostar, very scarcely explored so far in electrochemical biosensors, provides high sensitivities for a synthetic target DNA sequence with a unique 5-hmC in the promoter region of MGMT tumor suppressor gene. Amplification factors of 43.6 and 55.2 were achieved using ProtA-polyHRP80 or Histostar, respectively, compared to the conventional secondary antibody labeling. This amplification was crucial to detect methylation events at single-nucleotide resolution achieving limits of detection (LODs) of 23.0 and 13.2 pM, respectively, without any target DNA amplification. The ProtA-polyHRP80-based bioplatform, selected as a compromise between sensitivity and cost per determination, exhibited full discrimination toward the target 5-hmC against the closely related 5-mC. In addition, the bioplatform detected 5-hmC at the regional level (MGMT promoter region) in just 10 ng of genomic DNA (gDNA, â¼2700 genomes) extracted from cancer cells and tissues from colorectal cancer (CRC) patients within 60 min.
Subject(s)
DNA Methylation , Electrochemistry/methods , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , Cell Line, Tumor , Humans , Limit of DetectionABSTRACT
BACKGROUND: Ole e 7 is a nonspecific lipid transfer protein (nsLTP) from olive pollen, one of the main allergenic pollens worldwide. This allergenic nsLTP is responsible for severe symptoms in regions with high olive pollen exposure, where many Ole e 7-sensitized patients exhibit a co-sensitization to the peach nsLTP, Pru p 3. However, there is no evidence of cross-reactivity, which explains this observed co-sensitization. Therefore, the purpose of this study was to explore the relationship between Ole e 7 and Pru p 3. METHODS: A total of 48 patients sensitized to Ole e 7 and/or Pru p 3 were included in the study. Specific IgE serum levels were measured by ImmunoCAP 250 and ELISA. Inhibition assays were performed to determine the existence of cross-reactivity between both nsLTPs. Allergic response was analyzed ex vivo (basophil activation test) and in vitro (RBL-2H3 mast cell model). RESULTS: Common IgG and IgE epitopes were identified between both allergens. IgE-binding inhibition was detected in Ole e 7-monosensitized patients using rPru p 3 as inhibitor, reaching inhibition values of 25 and 100%. Ex vivo and in vitro assays revealed a response against rPru p 3 in four (31%) Ole e 7-monosensitized patients. CONCLUSIONS: Our results suggest that Ole e 7 could play a new role as primary sensitizer in regions with high olive pollen exposure, leading to the peach nsLTP sensitization. This co-sensitization process would occur because of the cross-reactivity between Ole e 7 and Pru p 3 observed in some allergic patients.